
Inquisitive Logic and Homotopy Type Theory

Vít Punčochář

Institute of Philosophy,
Czech Academy of Sciences,

Czech Republic

The outline of the talk

I inquisitive semantics
I homotopy type theory
I some connections between the two

Inquisitive Semantics

I a framework for a logical analysis of questions

Predecessors of inquisitive semantics

Alternative semantics:
I Hamblin, C. L. (1973). Questions in Montague English.
I Karttunen, L. (1977). Syntax and Semantics of Questions.

Partition semantics:
I Groenendijk, J., Stokhof, M. (1984). Studies in the Semantics

of Questions and the Pragmatics of Answers.
I Groenendijk, J. (1999). The Logic of Interrogation.

Inquisitive indifference semantics:
I Groenendijk, J. (2009). Inquisitive Semantics: Two

Possibilities for Disjunction.
I Mascarenhas, S. (2009). Inquisitive Semantics and Logic.

(Master thesis)

The current framework of inquisitive semantics

I Ciardelli, I. (2009). Inquisitive Semantics and Intermediate
Logics. (Master thesis)

Arguments with questions

S1,S2 are statements and Q1,Q2 questions

an argument its intended interpretation
S1/S2 S1 implies S2
Q1/S2 Q1 presupposes S2
S1/Q2 S1 resolves Q2
Q1/Q2 any information that resolves Q1 resolves also Q2

Examples

(a) The question who is Peter’s father: John or George?
pressuposes that John or Georg is Peter’s father .

(b) The conjunction of the statements if Mary is Peter’s mother,
then John is not Peter’s father and John is Peter’s father
resolves the question whether Mary is Peter’s mother .

(c) Assuming that Peter will go to the pub if and only if Ann will
go, any information that resolves the question whether Ann will
go to the pub resolves also the question whether Peter will go.

Examples

(a) The question who is Peter’s father: John or George?
pressuposes that John or Georg is Peter’s father .

(b) The conjunction of the statements if Mary is Peter’s mother,
then John is not Peter’s father and John is Peter’s father
resolves the question whether Mary is Peter’s mother .

(c) Assuming that Peter will go to the pub if and only if Ann will
go, any information that resolves the question whether Ann will
go to the pub resolves also the question whether Peter will go.

Examples

(a) The question who is Peter’s father: John or George?
pressuposes that John or Georg is Peter’s father .

(b) The conjunction of the statements if Mary is Peter’s mother,
then John is not Peter’s father and John is Peter’s father
resolves the question whether Mary is Peter’s mother .

(c) Assuming that Peter will go to the pub if and only if Ann will
go, any information that resolves the question whether Ann will
go to the pub resolves also the question whether Peter will go.

Questions are types of information

I Ciardelli, I. (2018). Questions as information types. Synthese,
195, 321–365.

Ciardelli’s example

I a certain disease may give rise to two symptoms: S1, S2

I hospital’s protocol:

if a patient presents symptom S2, the treatment is always
prescribed; if the patient only presents symptom S1, the
treatment is prescribed just in case the patient is in good
physical condition; if not, the risk associated with the
treatment outweigh the benefits, and the treatment is not
prescribed

A formalization of the protocol

The protocol:
I t ↔ s2 ∨ (s1 ∧ g)

where
I s1: the patient has symptom S1

I s2: the patient has symptom S2

I g : the patient is in good physical condtion
I t: the treatment is prescribed

Types of information

Examples of types of information:
I patient’s symptoms (S1,S2, . . .)
I patient’s conditions (good, bad)
I treatment (prescribed, not prescribed)

Types of information

Types of information correspond to questions:
I what are the patient’s symptoms: ?s1∧?s2
I whether the patient is in good physical conditions: ?g

I whether the treatment is prescribed: ?t

Dependencies among information types correspond to logical
relations among questions

t ↔ s2 ∨ (s1 ∧ g), ?s1∧?s2, ?g �?t

Picture taken from Galatos, N. Jipsen, P. Kowalski, T., Ono, H. (2007)
Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier
Science.

Language of propositional InqIL

Formulas:

ϕ,ψ ::= p | ⊥ | ϕ→ ψ | ϕ ∧ ψ | ϕ > ψ

Defined symbols:
I ¬ϕ =def ϕ→ ⊥,
I ϕ↔ ψ =def (ϕ→ ψ) ∧ (ψ → ϕ),

Declarative formulas:

α, β ::= p | ⊥ | α→ β | α ∧ β

Kripke frames and models

I Kripke frame F = 〈W ,≤〉 is a partial order,
I proposition in F is an upward closed set in F ,
I Kripke model is a pairM = 〈F ,V 〉, where F is a Kripke

frame, and V assigns propositions in F to atomic formulas.

Support relation

In any Kripke model the support relation between states and
formulas is defined as follows:
I w p iff w ∈ V (p);
I w 1 ⊥;
I w ϕ→ ψ iff for any v ≥ w , if v ϕ, v ψ;
I w ϕ ∧ ψ iff w ϕ and w ψ;
I w ϕ

>

ψ iff w ϕ or w ψ.

Inquisitive variant of a Kripke model

LetM = 〈S ,≤,V 〉 be a Kripke model. The inquisitive variant of
M is defined as the Kripke model

inq(M) = 〈Up∅S ,⊇,V ∗〉,

where
I Up∅S is the set of all nonempty propositions inM,
I ⊇ is the superset relation,
I V ∗(p) = {s ∈ Up∅S | s ⊆ V (p)}.

Inquisitive variant of a Kripke model

I a Kripke model N is called inquisitive if it is the inquisitive
variant of a Kripke model, i.e. N = inq(M), for some Kripke
modelM.

I an inquisitive Kripke model is called classical if it is the
inquisitive variant of a Kripke model where the ordering is
identity.

Claim
LetM be a Kripke model, s a state in inq(M) and α an
declarative formula. Then

s α in inq(M) iff for all w ∈ s, w α inM.

As a consequence, α is valid in inq(M) iff α is valid inM.

LetM = 〈W ,=,V 〉, where W = {w1,w2,w3,w4},
V (p) = {w1,w2}, and V (q) = {w1,w3}. Then:

I ||p|| = {w1,w2} inM,
I ||p|| = {{w1,w2}, {w1}, {w2}} in inq(M),
I ||p > q|| = {w1,w2,w3} inM,
I ||p > q|| = {{w1,w2}, {w1,w3}, {w1}, {w2}, {w3}} in inq(M).

w1

w2

w3

w4

Intuitionistic and classical inquisitive logic

The logic of all inquisitive models InqIL is obtained as intuitionistic
logic plus one extra principle called split:

α→ (ϕ

>

ψ)

(α→ ϕ)

>

(α→ ψ)

The logic of all classical inquisitive models InqB is obtained as
InqIL plus double negation for declarative formulas:

¬¬α
α

(α is declarative)

Adding presupposition

Language of propositional InqIL◦

ϕ,ψ ::= p | ⊥ | ϕ→ ψ | ϕ ∧ ψ | ϕ > ψ | ◦ϕ

◦ϕ expresses the information presupposed by ϕ

Defined symbols:
I ¬ϕ =def ϕ→ ⊥,
I ϕ↔ ψ =def (ϕ→ ψ) ∧ (ψ → ϕ),
I ϕ ∨ ψ =def ◦(ϕ

>

ψ).

Declarative formulas:

α, β ::= p | ⊥ | α→ β | α ∧ β | ◦ϕ

Support condition for the presupposition

s is a state of an inquisitive model:
s ◦ϕ iff for all w ∈ s, ↑w ϕ.

↑w = {v | w ≤ v}

Presupposition

w1

w2

w3

w4

w5

w6

7−→

w1

w2

w3

w4

w5

w6

Presupposition as double negation

¬¬

w1

w2

w3

w4

w5

w6

=

w1

w2

w3

w4

w5

w6

In intuitionistic inquisitive logic the presupposition
modality is not double negation

||ϕ|| = {{w2}, {w3}},
||◦ϕ|| = ↑{w2,w3},
||¬¬ϕ|| = ↑{w1,w2,w3},

w1

w2 w3

The inquisitive nucleus

Let P be a proposition in inquisitive semantics (non-empty
downward closed set of states). We define:

jP = {s ∈ States | s ⊆
⋃

P}

jP is the strongest declarative proposition implied by P . Then it
holds:
(a) P ⊆ jP ,
(b) jjP ⊆ jP ,
(c) j(P ∩ Q) = jP ∩ jQ,
(d) j(∅) = ∅.
So, j is a dense nucleus on the algebra of propositions.

The logic InqIL◦

I Intuitionistic logic plus split plus ◦-intro and ◦-elim

Split (alternative schematic formulation)

◦χ→ (ϕ

>

ψ)

(◦χ→ ϕ)

>

(◦χ→ ψ)

◦-intro and ◦-elim

ϕ
◦-intro◦ϕ ◦ϕ

[ϕ]
α
◦-elimα

where α is declarative

Compare ◦ and ∨

ϕ
◦-intro◦ϕ ◦ϕ

[ϕ]
α
◦-elimα

ϕ(ψ)
∨-intro

ϕ ∨ ψ ϕ ∨ ψ
[ϕ]
α

[ψ]
α
∨-elimα

ϕ ∨ ψ =def ◦(ϕ

>

ψ) ◦ϕ =def ϕ ∨ ϕ

Compare ◦ and ∨

ϕ
◦-intro◦ϕ ◦ϕ

[ϕ]
α
◦-elimα

ϕ(ψ)
∨-intro

ϕ ∨ ψ ϕ ∨ ψ
[ϕ]
α

[ψ]
α
∨-elimα

ϕ ∨ ψ =def ◦(ϕ

>

ψ) ◦ϕ =def ϕ ∨ ϕ

Axiomatic formulation

◦-intro and ◦-elim are equivalent to the following set of axioms:
(a) ◦α→ α, for declarative α,
(b) ϕ→ ◦ϕ,
(c) (ϕ→ ψ)→ (◦ϕ→ ◦ψ).

Another axiomatic formulation

◦-intro and ◦-elim are equivalent to the following axiom:
(ϕ→ α)↔ (◦ϕ→ α) (where α is declarative)

Presupposition and double negation

I ◦ϕ→ ¬¬ϕ is generally valid but ¬¬ϕ→ ◦ϕ is not,
I (¬¬ϕ→ ϕ)→ (¬¬ϕ↔ ◦ϕ) is valid
I adding full double negation leads to the trivialization of ◦
I adding double negation for declarative formulas leads to the

equivalence of ◦ and ¬¬
I (¬¬α→ α)↔ (¬¬α↔ ◦α) is valid for every declarative α

Presupposition and double negation

I ◦ϕ→ ¬¬ϕ is generally valid but ¬¬ϕ→ ◦ϕ is not,
I (¬¬ϕ→ ϕ)→ (¬¬ϕ↔ ◦ϕ) is valid
I adding full double negation leads to the trivialization of ◦
I adding double negation for declarative formulas leads to the

equivalence of ◦ and ¬¬
I (¬¬α→ α)↔ (¬¬α↔ ◦α) is valid for every declarative α

Presupposition and double negation

I ◦ϕ→ ¬¬ϕ is generally valid but ¬¬ϕ→ ◦ϕ is not,
I (¬¬ϕ→ ϕ)→ (¬¬ϕ↔ ◦ϕ) is valid
I adding full double negation leads to the trivialization of ◦
I adding double negation for declarative formulas leads to the

equivalence of ◦ and ¬¬
I (¬¬α→ α)↔ (¬¬α↔ ◦α) is valid for every declarative α

Presupposition and double negation

I ◦ϕ→ ¬¬ϕ is generally valid but ¬¬ϕ→ ◦ϕ is not,
I (¬¬ϕ→ ϕ)→ (¬¬ϕ↔ ◦ϕ) is valid
I adding full double negation leads to the trivialization of ◦
I adding double negation for declarative formulas leads to the

equivalence of ◦ and ¬¬
I (¬¬α→ α)↔ (¬¬α↔ ◦α) is valid for every declarative α

Presupposition and double negation

I ◦ϕ→ ¬¬ϕ is generally valid but ¬¬ϕ→ ◦ϕ is not,
I (¬¬ϕ→ ϕ)→ (¬¬ϕ↔ ◦ϕ) is valid
I adding full double negation leads to the trivialization of ◦
I adding double negation for declarative formulas leads to the

equivalence of ◦ and ¬¬
I (¬¬α→ α)↔ (¬¬α↔ ◦α) is valid for every declarative α

Propositional lax logic

Fairtlough, M., Mendler, M. (1997). Propositional lax Logic.
Information and Computation, 137, 1–33.
I model for formal verification of computer hardware

Propositional lax logic

Fairtlough, M., Mendler, M. (1997). Propositional lax Logic.
Information and Computation, 137, 1–33.
I model for formal verification of computer hardware

Dense propositional lax logic

Intuitionistic logic plus:
(a) ◦◦ϕ→ ◦ϕ,
(b) ϕ→ ◦ϕ,
(c) (ϕ→ ψ)→ (◦ϕ→ ◦ψ),
(d) ◦⊥ → ⊥.

Compare to our three axioms:
(a)’ ◦α→ α, for declarative α,
(b)’ ϕ→ ◦ϕ,
(c)’ (ϕ→ ψ)→ (◦ϕ→ ◦ψ).

(a)’-(c)’ is equivalent to (a)-(d) plus ◦p → p for atomic formulas

Nucleus (the algebraic counterpart of the lax modality)

A nucleus on a Heyting algebra H is a function j : H → H such
that for each s, t ∈ H:

(a) s ≤ j(s),
(b) j(j(s)) ≤ j(s),
(c) j(s ∧ t) = j(s) ∧ j(t).

(every nucleus is a closure operator)

A nucleus is dense if j(0) = 0.

Nuclear algebraic semantics for first-order intuitionistic
inquisitive logic

Formulas:

ϕ,ψ ::= Pt1 . . . tn | ⊥ | ϕ ∧ ψ | ϕ→ ψ | ∀xϕ | ◦ϕ | ϕ > ψ | ∃∃xϕ

Defined symbols:

ϕ ∨ ψ =def ◦(ϕ

>

ψ), ∃xϕ =def ◦∃∃xϕ

Declarative formulas:

α, β ::= Pt1 . . . tn | ⊥ | α ∧ β | α→ β | ∀xα | ◦ϕ

Complete Heyting algebra

A complete Heyting algebra (cHA) is any structure

H = 〈H,
∨
,
∧
,⇒, 0〉,

where
I 〈H,

∨
,
∧
〉 is a complete lattice,

I 0 is its least element
I ⇒ is a relative pseudocomplement, i.e. a binary operation on

H satisfying the residuation condition:

u ≤ s ⇒ t iff u ∧ s ≤ t.

Complete Heyting algebras as “frames” or “locales”

Complete Heyting algebras coincide with “frames” or “locales”
complete lattices satisfying the following infinitary distributive law:

s ∧
∨
i∈I

ti =
∨
i∈I

(s ∧ ti).

In every locale, relative pseudocomplement satisfying the
residuation condition can be defined as follows:

s ⇒ t =
∨
{u ∈ H | s ∧ u ≤ t}.

Nuclear cHAs

A nuclear cHA (ncHA) is a cHA equipped with a nucleus.

If H is an ncHA, the set jH = {j(s) | s ∈ H} of all its j-fixed points
will be called the declarative core of H. The j-fixed points will be
called declarative propositions.

Kripkean ncHAs

Let H = 〈H,
∨
,
∧
,⇒, 0〉 be a cHA. Take the structure

Dw(H) = 〈DwH,
⋃
,
⋂
,V, {0}, dj〉

where
I DwH is the set of all non-empty downsets of H,
I

⋃
and

⋂
are (infinitary) union and intersection,

I V is defined as follows:

X V Y =
⋃
{Z ∈ DwH | Z ∩ X ⊆ Y },

I and dj as follows:
dj(X) = ↓

∨
X .

We will call these structures Kripkean ncHAs. Moreover, if H is
complete atomic Boolean algebra then the Kripkean ncHA Dw(H)
will be called standard.

Declarative propositions

Declarative propositions are closed under implication, conjunction
and universal quantification. Moreover, the contradiction is
declarative.

Proposition
The declarative core of any ncHA is closed under

∧
and ⇒. In

dense ncHAs, 0 is declarative.

Declarative propositions form an cHA

If H = 〈H,
∨
,
∧
,⇒, 0, j〉 is a dense ncHA, we can define the

structure
jH = 〈jH,

∨
j ,
∧
,⇒, 0〉

where
I

∧
,⇒, 0 are taken form H (but restricted to the core),

I and
∨j X = j(

∨
X), for all X ⊆ H.

Proposition
jH is a cHA.

First-order frames

I by a first-order algebraic frame we will understand a pair
F = 〈H,U〉, where H is an ncHA and U is a non-empty set
(the domain of quantification).

I a valuation in F is defined as a function V which assigns to
any n-ary predicate P a function V (P) : Un → H

I we say that a valuation V is informative, if for any n-ary
predicate P we have V (P) : Un → jH

First-order models

I a first-order algebraic model is an algebraic frame equipped
with a valuation

I a regular algebraic model is an algebraic model in which the
valuation is informative.

I a Kripkean algebraic model is a regular algebraic model based
on a Kripkean ncHA.

I a standard algebraic model is a regular algebraic model based
on a standard Kripkean ncHA.

Evaluation

An evaluation in U is a function that assigns to each variable of the
language an element of U. If e is an evaluation, x a variable, and
m ∈ U, then e(m/x) is the evaluation that assigns m to x and
e(y) to any other variable y . For any term t, V e(t) is identical
with V (t) if t is a name, and with e(t) if t is a variable.

Algebraic value of a formula in a ncHA

I |⊥|Ne = 0,

I |Pt1 . . . tn|Ne = V (P)(V e(t1), . . . ,V e(tn)),

I |ϕ ∧ ψ|Ne = |ϕ|Ne ∧ |ψ|Ne ,

I |ϕ→ ψ|Ne = |ϕ|Ne ⇒ |ψ|Ne ,

I |∀xϕ|Ne =
∧

m∈U |ϕ|Ne(m/x),

I |◦ϕ|Ne = j(|ϕ|Ne)

I |ϕ > ψ|Ne = |ϕ|Ne ∨ |ψ|Ne ,

I |∃∃xϕ|Ne =
∨

m∈U |ϕ|Ne(m/x).

Validity

I an L-formula ϕ is e-valid in N , if |ϕ|Ne = 1
I ϕ is valid in N if for every evaluation e in N , ϕ is e-valid in N
I ϕ is valid in an algebraic frame if it is valid in every algebraic

model based on that frame.

Logics

I the logic of all algebraic models is first-order lax logic
I the logic of all regular algebraic models is first-order lax logic

plus the following axiom:

◦α→ α, for elementary formulas

I the logic of all Kripkean models is first-order intuitionistic
inquisitive logic

I the logic of all standard models is standard (classical)
first-order inquisitive logic

Inquisitive ncHAs

Let H = 〈H,
∨
,
∧
,⇒, 0, j〉 be an ncHA. We say that H is

inquisitive if j is dense and the following two conditions are satisfied
for every s ∈ H and any collection of indexed elements ti , uik ∈ H,
where i ∈ I and k ∈ K for some index sets I ,K :

(a) j(s)⇒
∨

i∈I ti =
∨

i∈I (j(s)⇒ ti),

(b)
∧

i∈I
∨

k∈K j(uik) =
∨

f :I→K

∧
i∈I j(uif (i)).

An algebraic frame (model) is called inquisitive if it is based on an
inquisitive ncHA.

Resolutions in propositional logic

R(p) = {p}, R(⊥) = {⊥},
R(ϕ ∧ ψ) = {α ∧ β | α ∈ R(ϕ), β ∈ R(ψ)},
R(ϕ→ ψ) = {

∧
α∈R(ϕ)(α→ f (α)) | f : R(ϕ)→ R(ψ)},

R(ϕ

>

ψ) = R(ϕ) ∪R(ψ).

Resolutions in first-order logic

RN
e (Pt1 . . . tn) = {|Pt1 . . . tn|Ne }, RN

e (⊥) = {0},

RN
e (ϕ ∧ ψ) = {s ∧ u | s ∈ RN

e (ϕ), u ∈ RN
e (ψ)},

RN
e (ϕ→ ψ) = {

∧
s∈RN

e (ϕ)(s ⇒ f (s)) | f : RN
e (ϕ)→ RN

e (ψ)},

RN
e (∀xϕ) = {

∧
m∈U f (m) | f : U →

⋃
m∈U RN

e(m/x),

s.t. f (m) ∈ RN
e(m/x), for each m ∈ U},

RN
e (◦ϕ) = {j(

∨
RN

e (ϕ))},

RN
e (ϕ

>

ψ) = RN
e (ϕ) ∪RN

e (ψ),

RN
e (∃∃xϕ) =

⋃
{RN

e(m/x)(ϕ) | m ∈ U}.

One can observe that for any formula ϕ, RNe(m/x)(ϕ) is a set of
core elements (i.e. declarative propositions) in N . Moreover:

Theorem
Let N = 〈H,U,V 〉 be a regular algebraic model, e an evaluation in
U, and ϕ an L-formula. If N is inquisitive then

|ϕ|Ne =
∨
RNe (ϕ).

A connection between inquisitive and Kripkean ncHAs

Let H1, H2 be ncHAs. A homomorphism from H1 to H2 is a
function h : H1 → H2 which preserves the operations

∨
,
∧
,⇒, j

and 0. We say that H2 is a homomorphic j-image of H1 if
j2H2 = h(j1H1).

Theorem
If H2 is a homomorphic j-image of H1 then ϕ is valid in all regular
models on 〈H1,U〉 iff ϕ is valid in all regular models on 〈H2,U〉.

Theorem
An ncHA is inquisitive iff it is a homomorphic j-image of a
Kripkean ncHA.

Intuitionistic type theory
Per Martin-Löf (born 1942)

I Swedish logician, mathematician, philosopher
I an enthusiastic bird-watcher
I 1961: Mortality rate calculations on ringed birds with special

reference to the Dunlin Calidris alpina
I 1966: The definition of random sequences. (a paper that gave

the first suitable definition of a random sequence)
I 1984: Intuitionistic type theory. Napoli: Bibliopolis.

Homotopy type theory

I (relatively) new framework for the foundations of
mathematics, oriented at computer proof-assistants and
computer friendly formalization of mathematics

I based on Per Martin-Löf’s intuitionistic type theory
I some history:

I 1994/1998 Hofmann & Streicher: intensional groupoid model
of Martin-Löf’s type theory

I 2006 Voevodsky: homotopy λ-calculus (program of studying
type systems by homotopical methods

I 2007/2009 Awodey & Warrren: homotopical model of
Martin-Löf’s type theory

Voevodsky’s research program

The broad motivation behind univalent foundations is a
desire to have a system in which mathematics can be for-
malized in a manner which is as neutral as possible. Whilst
it is possible to encode all of mathematics into Zermelo-
Fraenkel set theory, the manner in which this is done is ugly
. . . This problem becomes particularly pressing in attempt-
ing a computer formalization of mathematics; in the stan-
dard foundations, to write down in full even the most basic
definitions . . . requires many pages of symbols. Univalent
foundations seeks to improve on this situation by providing
a system, based on Martin-Löf’s dependent type-theory,
whose syntax is tightly wedded to the intended semantical
interpretation in the world of everyday mathematics.

Curry-Howard isomorphism/correspondence

The logic of function application and function formation:
I e.g. x : A, f : A→ B ` f (x) : B

The logic of propositions:
I e.g. A,A→ B ` B

Curry-Howard isomorphism/correspondence

The logic of function application and function formation:
I e.g. x : A, f : A→ B ` f (x) : B

The logic of propositions:
I e.g. A,A→ B ` B

Curry-Howard isomorphism/correspondence

The logic of function application and function formation:
I e.g. x : A, f : A→ B ` f (x) : B

The logic of propositions:
I e.g. A,A→ B ` B

Sequent system

I identity (ϕ ` ϕ),
I structural rules,
I introduction and elimination rules

Sequent system for intuitionistic logic

Introduction rule:

Γ, ϕ ` ψ
Γ ` ϕ→ ψ

Elimination rule:

Γ ` ϕ Γ ` ϕ→ ψ

Γ ` ψ

Adding terms

Introduction rule:

Γ, x : ϕ ` t : ψ

Γ ` λx .t : ϕ→ ψ

Elimination rule:

Γ ` u : ϕ Γ ` t : ϕ→ ψ

Γ ` t(u) : ψ

Curry-Howard isomorphism/correspondence

Theorem
ϕ is a type of a closed λ-term iff ϕ is intuitionistically valid.

Theorem
A derivation is normal (contains no detours) if and only if the term
assigned to it is in normal form.

ϕ→ ((ϕ→ ψ)→ ψ)

ϕ ` ϕ
ϕ,ϕ→ ψ ` ϕ

ϕ→ ψ ` ϕ→ ψ

ϕ,ϕ→ ψ ` ϕ→ ψ

ϕ,ϕ→ ψ ` ψ
ϕ ` (ϕ→ ψ)→ ψ

` ϕ→ ((ϕ→ ψ)→ ψ)

λx .λy .y(x) : ϕ→ ((ϕ→ ψ)→ ψ)

x : ϕ ` x : ϕ

x : ϕ, y : ϕ→ ψ ` x : ϕ

y : ϕ→ ψ ` y : ϕ→ ψ

x : ϕ, y : ϕ→ ψ ` y : ϕ→ ψ

x : ϕ, y : ϕ→ ψ ` y(x) : ψ

x : ϕ ` λy .y(x) : (ϕ→ ψ)→ ψ

` λx .λy .y(x) : ϕ→ ((ϕ→ ψ)→ ψ)

Types

Every object in mathematics is of some type:
I 3 : N
I π : R
I λn.n! : N→ N
I ξ : (R→ R)→ (N→ N)

In type theory, every object is of a unique type:
I 3N : N
I 3Z : Z
I 3Q : Q
I 3R : R

Propositions as types

The expression

t : A

has double reading:
(a) t is an object of type A

(b) t is a proof of proposition A

Dependent function types

A family of types B(a)

I B(a) is a type, for each a : A

General form of function types:
I f :

∏
a:A B(a)

I that is, f (a) : B(a), for each a : A

Judgements

I Γ ` A type

I Γ ` A = B type

I Γ ` t : A

I Γ ` s = t : A

where Γ is a context specifying the types of variables. E.g. we can
have the folowing judgement:
I x : A, f : A→ B ` f (x) : B

Rules

(a) formation rules
(b) introduction rules
(c) elimination rules
(d) computation rules

Type constructions

(a)
∏

(universal quantification)
(b)

∑
(existential quantification)

(c) ×, +, → (conjunction, disjunction, implication
(d) 0 (empty type = contradiction)
(e) Bool, N, Z, . . .

Coproduct: formation rule

Γ ` A type Γ ` B type
Γ ` A + B type

Coproduct: introduction rules

Γ ` A type Γ ` B type
Γ ` inl : A→ (A + B)

Γ ` A type Γ ` B type
Γ ` inr : B → (A + B)

Coproduct: elimination rule

Γ ` A type Γ ` B type Γ, x : A + B ` P(x) type
Γ ` ind+ :

∏
(x :A) P(inl(x))→ (

∏
(y :B) P(inr(y))→

∏
(z:A+B) P(z))

Natural numbers: formation rule

` N type

Natural numbers: introduction rules

` 0N : N

` succN : N→ N

Natural numbers: elimination rule

Γ, n : N ` P(n) type
Γ ` indN : P(0N)→ (

∏
n:N(P(n)→ P(succN))→

∏
n:N P(n))

Logical operators

I A→ B corresponds to implication
I A→ 0 corresponds to negation
I A× B corresponds to conjunction
I A + B corresponds to disjunction

Quantifiers

I
∏

x :A B(x) corresponds to ∀x :A.B(x)

I
∑

x :A B(x) corresponds to ∃x :A.B(x)

Identity types

I if A is a type then IdA is a family of types
I IdA(x , y) is a type, for any x , y : A

I IdIdA(x ,y)(p, q) is a type, for any p, q : IdA(x , y)

I instead of IdA(x , y), I will be using x =A y

Identity types

I if A is a type then IdA is a family of types
I IdA(x , y) is a type, for any x , y : A

I IdIdA(x ,y)(p, q) is a type, for any p, q : IdA(x , y)

I instead of IdA(x , y), I will be using x =A y

Identity types

I if A is a type then IdA is a family of types
I IdA(x , y) is a type, for any x , y : A

I IdIdA(x ,y)(p, q) is a type, for any p, q : IdA(x , y)

I instead of IdA(x , y), I will be using x =A y

Identity types

I if A is a type then IdA is a family of types
I IdA(x , y) is a type, for any x , y : A

I IdIdA(x ,y)(p, q) is a type, for any p, q : IdA(x , y)

I instead of IdA(x , y), I will be using x =A y

Homotopy type theory

HoTT vs. set theory

I set theory: based on classical logic (not constructive)
I type theory: based on intuitionistic logic (constructive)

HoTT vs. set theory

I set theory: logic and mathematics separated
I type theory: logic and mathematics mixed

HoTT vs. set theory

I set theory: propositions and sets separated
I type theory: propositions and types identified

HoTT vs. set theory

I set theory: one category of objects (sets)
I type theory: multiplicity of types

HoTT vs. set theory

I set theory: one object is a member of many sets
I type theory: one object is a member of one single type

HoTT vs. set theory

I set theory: one closed universe
I type theory: open-ended (new inductive types can be

introduced)

Constructivity of HoTT

I Homotopy type theory is essentially constructive
I it is incompatible with the law of excluded middle and with

double negation law:

A + ¬A, ¬¬A→ A

I can HoTT preserve classical mathematics?

Constructivity of HoTT

I Homotopy type theory is essentially constructive
I it is incompatible with the law of excluded middle and with

double negation law:

A + ¬A, ¬¬A→ A

I can HoTT preserve classical mathematics?

Constructivity of HoTT

I Homotopy type theory is essentially constructive
I it is incompatible with the law of excluded middle and with

double negation law:

A + ¬A, ¬¬A→ A

I can HoTT preserve classical mathematics?

Mere propositions

I type P is a mere proposition if for all x , y : P we have x =P y

I more formally:

Mere(P) =def

∏
x ,y :P

x =P y

Mere propositions

I type P is a mere proposition if for all x , y : P we have x =P y

I more formally:

Mere(P) =def

∏
x ,y :P

x =P y

Mere propositions

I 0 is a mere proposition
I moreover, mere propositions are closed under ×,→,

∏
I but they are not closed under +,

∑

Mere propositions

I 0 is a mere proposition
I moreover, mere propositions are closed under ×,→,

∏
I but they are not closed under +,

∑

Mere propositions

I 0 is a mere proposition
I moreover, mere propositions are closed under ×,→,

∏
I but they are not closed under +,

∑

Truncation

I for any type A there is a type ◦A, called the truncation of A
I ◦A usually denoted as ||A|| or [A]

I this modality can be characterized by type theoretic versions of
◦-intro and ◦-elim

Truncation

I for any type A there is a type ◦A, called the truncation of A
I ◦A usually denoted as ||A|| or [A]

I this modality can be characterized by type theoretic versions of
◦-intro and ◦-elim

Truncation

I for any type A there is a type ◦A, called the truncation of A
I ◦A usually denoted as ||A|| or [A]

I this modality can be characterized by type theoretic versions of
◦-intro and ◦-elim

The logic of mere propositions

Awodey, S., Bauer, A. (2004). Propositions as [Types]. JLC

Definition
Let P and Q be mere propositions. Traditional logical notation is
defined as follows:

> :≡ 1, ⊥ :≡ 0

¬P :≡ P → 0 P ⇒ Q :≡ P → Q

P ⇔ Q :≡ P = Q (∀x : A).P(x) :≡
∏

x :A P(x)

P ∨ Q :≡ ◦(P + Q) (∃x : A).P(x) ≡ ◦
∑

x :A P(x)

Double negation law and excluded middle can be preserved on the
level of mere propositions

Levels of truncation

In HoTT there are not just two levels, like in inquisitive logic, but
there is whole hierarchy of the levels of truncation:

I level -2: contractible types (declarative theorems)
I level -1: mere propositions (declarative propositions)
I level 0: sets (inquisitive propositions)

...
I level n: n-truncated types

...

From the HoTT book

Using all types as propositions yields a very “constructive” con-
ception of logic . . . Thus, from every proof we can automatically
extract an algorithm; this can be very useful in applications
to computer programming. On the other hand, however, this
logic . . . does not faithfully represent certain important classi-
cal principles of reasoning, such as the axiom of choice and the
law of excluded middle. For these we need to use the “(-1)-
truncated” logic, in which only the homotopy (-1)-types repre-
sent propositions. . .

From the HoTT book

. . . while the pure propositions-as-types logic is “constructive” in
the strong algorithmic sense mentioned above, the default (−1)-
truncated logic is “constructive” in a different sense (namely,
that of the logic formalized by Heyting under the name “intu-
itionistic”); and to the latter we may freely add the axioms of
choice and excluded middle to obtain a logic that may be called
“classical” . . . The homotopical perspective reveals that classical
and constructive logic can coexist. . . Indeed, one can even have
useful systems in which only certain types satisfy such further
“classical” principles, while types in general remain “construc-
tive” . . . Most of classical mathematics which depends on the
law of excluded middle and the axiom of choice can be per-
formed in univalent foundations, simply by assuming that these
two principles hold (in their proper, (-1)-truncated, form).

