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Abstract

In this paper we study IL(PRA), the interpretability logic of PRA. As PRA is
neither an essentially reflexive theory nor finitely axiomatizable, the two known
arithmetical completeness results do not apply to PRA: IL(PRA) is not ILM or
ILP. IL(PRA) does of course contain all the principles known to be part of IL(All),
the interpretability logic of the principles common to all reasonable arithmetical
theories. In this paper, we take two arithmetical properties of PRA and see what
their consequences in the modal logic IL(PRA) are. These properties are reflected
in the so-called Beklemishev Principle B, and Zambella’s Principle Z, neither of
which is a part of IL(All). Both principles and their interrelation are submitted to
a modal study. In particular, we prove a frame condition for B. Moreover, we prove
that Z follows from a restricted form of B. Finally, we give an overview of the known
relationships of IL(PRA) to important other interpetability principles.
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1 Introduction

The notion of a relativized interpretation occurs in many places in mathemat-
ics and in mathematical logic. If a theory T interprets a theory S, we shall
write T � S, which then, roughly, means that there is a translation ·t from
symbols in the language of S to formulas in the language of T such that any
theorem of S becomes a theorem of T under the canonical extension of this
translation to formulas. In the notion of interpretation that we are interested
in, the logical structure of formulas has to be preserved under the translation.
Thus, for example, (ϕ∨ψ)t = ϕt ∨ψt and in particular ⊥t = (∨∅)t = ∨∅ = ⊥.
We refer the reader to [17], [5] and [15] for precise definitions and examples.

In this paper, we shall not go much into the technical details of interpreta-
tions. Rather, we are interested in the structural behavior of this notion of
interpretability. In particular, we are interested in the structural behavior of
interpretability on sentential extensions of a certain base theory T . An easy
example of such a structural property is the transitivity of interpretations:

(T + α� T + β) ∧ (T + β � T + γ)→ (T + α� T + γ).

We can use so-called interpretability logics to capture, in a sense, the com-
plete structural behavior of interpretability between sentential extensions of
a certain base theory. We shall soon say a bit more on this. For now it is
important to note that for a large collection of theories, the interpretability
logic is known.

We call a theory reflexive if it proves the consistency of any of its finite sub-
theories (as sets of axioms). We call a theory essentially reflexive if any finite
sentential extension of it is reflexive. It is easy to see that any theory with full
induction, like Peano Arithmetic, is essentially reflexive. The interpretability
logic of essentially reflexive theories was determined independently by Berar-
ducci and Shavrukov ([4], [13]). We shall encounter this logic below under the
name of ILM. The principle (A�B)→ (A∧2C �B ∧2C) which is the par-
ticular feature of this system. It is called Montagna’s principle since it arose
during the original discussions between Franco Montagna and Albert Visser
about the modal principles underlying interpetability logic. It was known to
Lindström and Švejdar in arithmetic disguise before.

It turns out that theories which are finitely axiomatizable and which contain
a sufficient amount of arithmetic, have a different interpretability logic which
is called ILP. In [17], the first proof was given.

For no theory that is neither finitely axiomatizable nor essentially reflexive,
the interpretability logic is known. PRA is one such theory. In this paper, we
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shall make some first attempts to work out the interpretability logic of PRA.

As such, this paper also fits into a larger project. As pointed out above, differ-
ent arithmetical theories have different interpretability logics. A question that
is open since a long time concerns the logic of the core principles that pertain
to all reasonable arithmetical theories - IL(All). As PRA is certainly a ‘rea-
sonable arithmetical theory’, this core logic should also be a part of IL(PRA).
In this paper we shall not focus too much on the principles in the core logic.
Rather shall we consider the interpretability behavior of PRA that is typical
for this theory.

One such principle that is characteristic for PRA is Beklemishev’s principle
that shall be studied closely in this paper. This principle exploits the fact that
any theory which is an extension of PRA by Σ2 sentences is reflexive. We
give a characterization of this principle in terms of the modal semantics for
interpretability logics.

A topic that is closely related to interpretability logics, is that of Π1-conservativity
logics. A theory S is Π1 conservative over a theory T in the same language
of arithmetic, we shall write S �Π1 T whenever S proves any Π1 theorem
that is proven by T . In symbols: T ` π =⇒ S ` π for any π ∈ Π1. It
is easy to see that for any Σ1 sentence σ, the following is a valid principle
S�Π1 T → S+σ�Π1 T +σ. This principle is the basis for Montagna’s princi-
ple for interpretability logic, and Beklemishev’s principle which is studied in
this paper is a restriction of Montagna’s principle.

When T and S are both reflexive theories we have that S � T ↔ S �Π1 T .
This equivalence was exploited by Hájek and Montagna who were the first to
show that the Π1-conservativity logic of PA is ILM as well [9]. The observa-
tion about the equivalence is more generally important when looking at the
repercussions of Π1-conservativity principles on interpretability logics. In this
paper we shall consider Zambella’s principle for Π1-conservativity logics and
look at its repercussions for the interpretability logic of PRA. We shall show
that Zambella does not add new information in the sense that its modal-logical
consequences are already implied by Beklemishev’s principle.

It is remarkable that the notion of interpretability is, in a sense, less stable
than that of Π1-conservativity. Hájek and Montagna show that their results
extends to all reasonable theories containing IΣ1. This was strengthened by
Beklemishev and Visser in [3]: all theories extending the parameter-free in-
duction schema IΠ−1 have the same Π1-conservativity logic (ILM) whereas in
this range the interpretability logics expose a diverse and wild behavior. Note
though that PRA does not prove IΠ−1 , and, in fact, the Π1-conservativity logic
of PRA remains unknown.
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A number of the results in this paper was first proved in [10].

2 Arithmetic

Let us first fix some arithmetical notation. We use modal symbols 2,3,� both
in modal and arithmetical statements, here we fix their arithmetical meaning.
We write, for an arithmetical sentence α, 2Tα for formalized provability in T,
2T,nα for formalized provability of α in T using only non-logical axioms with
Gödel numbers ≤ n and formulas of logical complexity ≤ n 2 . Dually, 3Tα =
¬2T¬α means formalized consistency of α over T (i.e. nonexistence of a proof
of a contradiction from α), while 3T,nα means ¬2T,n¬α. For theories T, S
we use T � S to denote formalized interpretability of S in T. For arithmetical
sentences α, β, α�T β means T + α� T + β. Similarly for theories T, S, �Π1

denotes formalized Π1-conservativity of T over S and for arithmetical sentences
α, β, α�Π1 β means T + α�Π1 T + β.

2.1 What is PRA?

In the literature there are many definitions of PRA. Probably the best known
definition uses a language that contains a function symbol for every primi-
tive recursive function. The axioms contain the defining equations of these
functions. Moreover, there are induction axioms for each ∆0-formula in this
enriched language.

Beklemishev has shown in [2] that PRA is in a strong sense equivalent (faith-
fully mutually interpretable) with (EA)2

ω. Here, (EA)2
ω is the theory that is

obtained by starting with EA (= I∆0 + exp) and iterating ‘ω many times’
Π2-reflection. In symbols: (EA)2

0 = EA, and (EA)2
n+1 = RFN(EA)2n

(Π2).

In this paper, we shall use the definition:

PRA := (EA)2
ω.

Under this definition, the following lemma is immediate.

Lemma 1 Any r.e. extension of PRA by Σ0
2 sentences is reflexive.

2 Since PRA proves superexponentiation this is, in the case under study, equivalent
to the restriction of axioms to those ≤ n
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2.2 The Orey-Hájek Characterizations

All theories that are mentioned here are supposed to be consistent and have
a poly-time recognizable axiomatization. Orey and Hájek have given several
equivalent conditions on theories which express that the one interprets the
other. In this subsection we shall briefly mention the one we shall need and
refer to the literature for proofs.

Lemma 2 Whenever T is reflexive we have that

T � S ⇔ ∀x T ` ¬2S,x⊥

Moreover in the presence of the totality of exponentiation this equivalence can
be formalized.

` T � S ↔ ∀x 2T¬2S,x⊥

In [10] an overview is given of all the implications, corresponding requirements
and necessary arguments regarding Orey-Hájek. In the above Lemma the ⇐
does not need the requirement of reflexivity and can actually be formalized
in S1

2. For the other direction reflexivity is needed, and for its formalization,
the totality of exp as well.

Note that, using the above characterization, the prima facie Σ3 notion of
interpretability becomes Π2.

3 Modal logics and semantics

Similarly as formalized provability can be captured by modal provability logic,
we can use modal logic to reason about formalized interpretability. Modal
logic proved to be an extremely useful tool to reason about such formalized
phenomena since it can visualize their behaviour using a simple language and
an intuitive frame semantics. Perhaps the most significant point where modal
logic shows its skills are completeness proofs - arithmatical completeness proofs
are based on modal completeness proofs obtained by rather standard method
of model theory of modal logics. For more on material contained in this section
we refer to [17,10,8].

We will work with modal propositional language containing two modalities -
a unary 2 modality for provability and a binary � modality for interpretabil-
ity. Modal interpretability formulas are defined as follows:

A ::= p | ⊥ | (A ∧A) | (A → A) | (2A) | (A�A)
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We will use standard abbreviations 3,∨,¬,>,↔, and we write A ≡ B instead
of (A�B) ∧ (B �A). We shall often omit brackets writing formulas. We say
that ¬,2, and 3 bind equally strong, they bind stronger then equally strong
binding ∨ and ∧ which in turn bind stronger then �. The weakest binding
connectives are → and ↔.

An arithmetical interpretation of modal formulas is given by arithmetical real-
izations : for an arithmetical theory T, an arithmetical T-realization is a map ∗
sending propositional variables p to arithmetical sentences p∗. It is extended to
interpretability modal formulas as follows: first ∗ commutes with all boolean
connectives. Moreover (2A)∗ = 2TA

∗ and (A�B)∗ = A∗�T B
∗, i.e. ∗ trans-

lates modal operators to formalized provability and interpretability over T
respectively.

An interpretability principle of an arithmetical theory T is a modal formula A
such that ∀∗ T ` A∗. The interpretability logic of a theory T, denoted IL(T),
is then the set of all the interpretability principles of T.

3.1 The logic IL

The logic IL is in a sense the core interpretability logic - it is a (proper) part of
the interpretability logic of any reasonable arithmetical theory: IL ⊂ IL(T).
It captures the basic structural behaviour of interpretability.

IL is defined as the smallest set of formulas containing all propositional tau-
tologies, all instantiations of the following schemata, and is closed under the
Necessitation and Modus Ponens rules:

L1 2(A→ B)→ (2A→ 2B)

L2 2A→ 22A

L3 2(2A→ A)→ 2A

J1 2(A→ B)→ A�B

J2 (A�B) ∧ (B � C)→ A� C

J3 (A� C) ∧ (B � C)→ A ∨B � C

J4 A�B → (3A→ 3B)

J5 3A� A

Note that the part of IL not containing the � modality is the well-known
Gödel-Löb provability logic GL, axiomatized by the first three schemata. It is
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easy to show that 2 can be defined in terms of � modality: `IL 2A↔ ¬A�⊥.

More interpretability logics are obtained extending IL by new interpretability
principles. Some of such principles are listed below:

W A�B → A�B ∧2¬A

W∗ A�B → B ∧2C �B ∧2C ∧2¬A

M0 A�B → 3A ∧2C �B ∧2C

M A�B → A ∧2C �B ∧2C

P A�B → 2(A�B)

R A�B → ¬(A� ¬C) �B ∧2C

R∗ A�B → ¬(A� ¬C) �B ∧2C ∧2¬A

All of these principles are in IL(All) except the principles M and P which were
mentioned above already. For an overview, see [17] and [8]. For the last word
on IL(All) see [11].

For X a set of principles we denote ILX the logic extending IL with schemata
from X.

There are some results considering arithmetical completeness of interpretabil-
ity logics: it was shown in [4],[13] that the interpretability logic of an essen-
tially reflexive theory (as e.g. PA) is ILM. For finitely axiomatizable theories
containing supexp the interpretability logic is known to be ILP ([16]).

An important consequence of ILM that expresses the Π1-conservativity of
interpretability more directly is (A� 3B)→ 2(A→ 3B).

3.2 Modal semantics

Modal frame semantics of interpretability logics is based on GL-frames ex-
tended with a ternary accesibility relation interpreting the binary � modality.
The ternary relation is however given by a set of binary relations indexed by
the nodes:

Definition 3 An IL-frame (a Veltman frame) is a triple 〈W,R, S〉 where W
is a nonempty universe, R is a binary relation on W , and S is a set of binary
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relations on W , indexed by elements of W such that

1. R is transitive and conversely well-founded

2. ySxz ⇒ xRy&xRz

3. xRy ⇒ ySxy

4. xRyRz ⇒ ySxz

5. uSxvSxw ⇒ uSxw

An IL-model is a quadruple 〈W,R, S,
〉 where 〈W,R, S〉 is a IL-frame and 

is a subset of W ×Prop, extending to boolean formulas as usualy and to modal
formulas as follows:

w 
 2A iff ∀v(wRv ⇒ v 
 A)

w 
 A�B iff ∀u(wRu & u 
 A⇒ ∃v(uSwv 
 B))

We adopt standard definitions of validity of a modal formula in a model and
in a frame. Moreover, let X be a scheme of interpretability logic. We say that
a formula C in first or higher order logic is a frame condition for X if, for each
frame F ,

F |= C iffF |= X.

Let us list some known frame conditions (to be read universally quantified):

M xRySxzRu⇒ yRu

M0 xRyRzSxuRv ⇒ yRv

P xRyRzSxu⇒ yRu ∧ zSyu

W (Sw;R) is conversely well-founded

R xRyRzSxuRv ⇒ zSyv

We have the following completeness results: IL is sound and complete w.r.t.
(finite) IL frames, ILP is complete w.r.t. (finite) ILP frames (all in [6]), ILW
is complete w.r.t. (finite) ILW frames ([7], see also [8]), ILM is complete w.r.t.
(finite) ILM frames (in [6], also in [4]),
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4 Beklemishev’s principle

It is possible to write down a valid principle specific for the interpretability
logic of PRA. This was first done by Beklemishev (see [17]). Beklemishev’s
principle B exploits the fact that any finite Σ2-extension of PRA is reflexive,
together with the fact that we have a good Orey-Hájek characterization for
reflexive theories.

It turns out to be possible to define a class of modal formulae which are under
any arithmetical realization provably Σ2 in PRA. These are called essentially
Σ2-formulas, we write ES2. Let us start by defining this class and some related
classes.

The idea behind this definition is as follows. It is clear that each modal formula
that starts with a 2 will become under any arithmetical realization a Σ1

formula. Likewise, taking Lemma 2 into account, we see that any formula of
the form A � B where A is Σ2, will be under any arithmetical realization of
complexity Π2 and hence, ¬(A � B) will again be Σ2. Note that we are here
only formulating sufficient conditions. It turns out to be rather tough to show
these classes actually cover, up to provable equivalence, all formulae in the
intended complexity class.

The class BS1 denotes the formulae that are boolean combinations of Σ1 for-
mulae ad thus certainly ∆2. Likewise, ES3 and ES4, stands for those modal
formulae that are under any arithmetical realization always Σ3 or Σ4 respec-
tively.

In our definition, A will stand for the set of all modal interpretability formulae.

BS1 ::= 2A | ¬BS1 | BS1 ∧ BS1 | BS1 ∨ BS1

ES2 ::= 2A | ¬2A | ES2 ∧ ES2 | ES2 ∨ ES2 | ¬(ES2 �A)

ES3 ::= 2A | ¬2A | ES3 ∧ ES3 | ES3 ∨ ES3 | A�A

ES4 ::= 2A | ¬ES4 | ES4 ∧ ES4 | ES4 ∨ ES4 | A�A

For n ≥ 4 we set ESn := ES4. We can now formulate Beklemishev’s principle
B.

B := A�B → A ∧2C �B ∧2C for A ∈ ES2

Note that B is just Montagna’s principle M restricted to ES2-formulas.

Lemma 4 ILB ` B′, where B′ : A� B → A ∧ C � B ∧ C with A ∈ ES2 and
C a CNF (a conjunction of disjunctions) of boxed formulas.
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PROOF. Easy.

5 Arithmetical soundness of B

By Lemma 1 we know that PRA +σ is reflexive for any Σ2(PRA)-sentence σ.
Thus, we get by Orey-Hájek that

PRA ` σ �PRA ψ ↔ ∀x 2PRA(σ → 3PRA,xψ). (1)

Consequently, for σ ∈ Σ2(PRA), ¬(σ �PRA ψ) ∈ Σ2(PRA) and we see that,
indeed, ∀A∈ES2 ∀∗ A∗ ∈ Σ2(PRA). This enables us to prove the arithmetical
soundness of B.

Theorem 5 For any formulas B and C we have that ∀A∈ES2 ∀ ∗ PRA `
(A�B → A ∧2C �B ∧2C)∗.

PROOF. For some A ∈ ES2 and arbitrary B and C, we consider some re-
alization ∗ and let α := A∗, β := B∗ and γ := C∗. We reason in PRA and
assume α�PRA β. As α is Σ2(PRA), we get by (1) that

∀x 2PRA(α→ 3PRA,xβ). (2)

We now consider n large enough (dependent on γ) such that

2PRA(2PRAγ → 2PRA,n2PRAγ). (3)

From general observations we have that, for large enough n,

2PRA,n(δ → ¬ε) ∧2PRA,nδ → 2PRA,n¬ε,

whence
3PRA,nε ∧2PRA,nδ → 3PRA,n(δ ∧ ε) (4)

Combining (2), (3), and using (4), we see that for any n, 2(α ∧ 2γ →
3PRA,n(β ∧ 2γ)). Clearly, α ∧ 2γ is still a Σ2(PRA)-sentence. 3 Again by
(1) we get α ∧2γ � β ∧2γ.

Let MESn be the schema A�B → A∧2C�B∧2C with A ∈ ESn. Theorem 5
can be generalized using results of [1] to the theory IΣR

n , which is Robinson’s
arithmetic Q plus the Σn induction rule, for n = 1, 2, 3 as follows:

3 Actually, this observation is not necessary as we use the direction in the Orey-
Hájek Characterization that does not rely on the reflexivity.
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Theorem 6 IL(IΣR
n ) ` MESn+1 for n = 1, 2, 3.

6 A frame condition for B

Let us first fix some notation. If C is a finite set, we write xRC as short for∧∧
c∈C xRc. Similar conventions hold for the other relations. The A-critical cone

of x, CA
x is in this section defined as CA

x := {y | xRy ∧ ∀z (ySxz → z 6
 A)}.

By x↑ we denote the set of worlds that lie above x w.r.t. the R relation. That
is, x↑ := {y | xRy}. With ySx↑ we denote the set of those z for which ySxz.

We will consider frames both as modal models without a valuation and as
structures for first- (or sometimes second) order logic. We say that a model
M is based on a frame F if F is precisely M with the 
 relation left out.

In this subsection we give the frame condition of Beklemishev’s principle. Our
frame condition holds on the class of finite frames. At first sight, the condition
might seem a bit awkward. On second sight it is just the frame condition of M
with some simulation built in. First we approximate the class ES2 by stages.

Definition 7

ES0
2 := BS1

ESn+1
2 := ESn

2 | ESn+1
2 ∧ ESn+1

2 | ESn+1
2 ∨ ESn+1

2 | ¬(ESn
2 �A)

It is clear that ES2 = ∪iESi
2. We now define some first order formulas Si(b, u)

that say that two nodes b and u in a frame look alike. The larger i is, the more
the two points look alike. We use the letter S as to hint at a simulation.

Definition 8

S0(b, u) := b↑ = u↑

Sn+1(b, u) := Sn(b, u)∧

∀c (bRc→ ∃c′ (uRc′ ∧ Sn(c, c′) ∧ c′Su↑ ⊆ cSb↑))

By induction on n we easily see that ∀n F |= Sn(b, b) for all frames F and all
b∈F . For i ≥ 1 the relation Si(b, u) is in general not symmetric. However it is
not hard to see that the Si are transitive and reflexive.

Lemma 9 Let F be a model. For all n we have the following. If F |= Sn(b, u),
then b 
 A⇒ u 
 A for all A∈ESn

2.

PROOF. We proceed by induction on n. If n=0, A∈ES0
2 can be written as
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∨∨
i(2Ai ∧

∧∧
j 3Aij). Clearly, if b↑ = u↑ then b 
 A⇒ u 
 A.

Now consider A∈ESn+1
2 and b and u such that F |= Sn+1(b, u). We can write

A =
∨∨

i

(Ai0 ∧
∧∧

j 6=0

¬(Aij �Bij)),

with Aij in ESn
2. If b 
 A, then for some i, b 
 Ai0 ∧

∧∧
j 6=0 ¬(Aij � Bij). As

Sn+1(b, u) → Sn(b, u), and by the induction hypothesis we see that u 
 Ai0.
So, we only need to see that u 
 ¬(Aij �Bij) for j 6=0. As b 
 ¬(Aij �Bij), for

some c∈CBij

b we have c 
 Aij. By Sn+1(b, u) we find a c′ such that uRc′, and

c′Su↑ ⊆ cSb↑ (thus cSbc
′). This guarantees that c′∈CBij

u . Moreover we know that
Sn(c, c′), thus by the induction hypothesis, as c 
 Aij, we get that c′ 
 Aij.
Consequently u 
 ¬(Aij �Bij).

Lemma 10 Let F be a finite frame. For all i, and any b∈F , there is a valu-
ation V b

i on F and a formula Ab
i∈ESi

2 such that F |= Si(b, u)⇔ u 
 Ab
i .

PROOF. The proof proceeds by induction on i. First consider the basis case,
that is, i=0. Let b↑ be given by the finite set {xj}j∈J . We define

y 
 pj ⇔ y=xj

y 
 r ⇔ bRy.

Let Ab
0 be 2r ∧ ∧∧

j 3pj. It is now obvious that u 
 A0 ⇔ u↑=b↑.

For the inductive step, we fix some b and reason as follows. First, let V b
i and

Ab
i be given by the induction hypothesis such that u 
 Ab

i ⇔ F |= Si(b, u). We
do not specify the variables in Ai but we suppose they do not coincide with
any of the ones mentioned below. Let b↑ = {xj}j∈J . The induction hypothesis
gives us sentences Aj

i (no sharing of variables) and valuations V j
i such that

F, u 
 Aj
i ⇔ F |= Si(xj, u).

Let {qj}j∈J be a set of fresh variables. V b
i+1 will be V b

i and V j
i on the old

variables. For the {qj}j∈J we define V b
i+1 to act as follows:

y 
 qj ⇔ y 6∈xjSb↑.

Moreover we define
Ab

i+1 := Ab
i ∧

∧∧
j

¬(Aj
i � qj).

Now we will see that under the new valuation V b
i+1,

(i) u 
 Ab
i+1 ⇒ F |= Si+1(b, u),

(ii) F |= Si+1(b, u)⇒ u 
 Ab
i+1.
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For (i) we reason as follows. Suppose u 
 Ab
i+1. Then also u 
 Ab

i and thus
F |= Si(b, u). It remains to show that

F |= ∀c (bRc→ ∃c′ (uRc′ ∧ Si(c, c
′) ∧ cSbc

′ ∧ c′Su↑ ⊆ cSb↑)).

To this purpose we consider and fix some xj in b↑. As u 
 Ab
i+1, we get that

u 
 ¬(Aj
i � qj). Thus, for some c′ ∈Cqj

u , c′ 
 Aj
i . Clearly c′ 
 ¬qj whence

xjSbc
′. Also ∀t (c′Suy ⇒ y 
 ¬qj) which, by the definition of V b

i+1 translates

to c′Su↑ ⊆ xjSb↑. Clearly also uRc′. By c′ 
 Aj
i and the induction hypothesis

we get that Si(xj, c
′). Indeed we see that F |= Si+1(b, u).

For (ii) we reason as follows. As F |= Si+1(b, u), also F |= Si(b, u) and by the
induction hypothesis, u 
 Ab

i . It remains to show that u 
 ¬(Aj
i � qj) for any

j. So, let us fix some j. Then, by the second part of the Si+1 requirement we
find a c′ such that

uRc′ ∧ Si(xj, c
′) ∧ xjSbc

′ ∧ c′Su↑ ⊆ xjSb↑.

Now, uRc′ ∧ xjSbc
′ ∧ c′Su↑ ⊆ xjSb↑ gives us that c′ ∈Cqj

u . By Si(xj, c
′) and the

induction hypothesis we get that c′ 
 Aj
i . Thus indeed u 
 ¬(Aj

i � qj).

Note that in the proof of this lemma, we have only used conjunctions to
construct the formulas Ab

i .

Definition 11 For every i we define the frame condition Ci to be

∀ a, b (aRb→ ∃u (bSau ∧ Si(b, u) ∧ ∀ d, e (uSadRe→ bRe))).

Lemma 12 Let F be a finite frame. For all i, we have that

for all A∈ESi
2, F |= A�B → A ∧2C �B ∧2C,

if and only if
F |= Ci.

PROOF. First suppose that F |= Ci and that a 
 A � B for some A∈ESi
2

and some valuation on F . We will show that a 
 A ∧ 2C � B ∧ 2C for any
C. Consider therefore some b with aRb and b 
 A ∧ 2C. The Ci condition
provides us with a u such that

bSau ∧ Si(b, u) ∧ ∀ d, e (uSadRe→ bRe) (∗)

As F |= Si(b, u), we get by Lemma 9 that u 
 A. Thus, as aRu and a 

A � B, we know that there is some d with uSad and d 
 B. If now dRe, by

13



(∗), also bRe and hence e 
 C. Thus, d 
 B ∧ 2C. Clearly bSad and thus
a 
 A ∧2C �B ∧2C.

For the opposite direction we reason as follows. Suppose that F 6|= Ci. Thus,
we can find a, b with

aRb ∧ ∀u (bSau ∧ Si(b, u)→ ∃ d, e (uSadRe ∧ ¬bRe)) (∗∗).

By Lemma 10 we can find a valuation V b
i and a sentence Ab

i∈ESi
2 such that

u 
 Ab
i ⇔ F |= Si(b, u). Let q and s be fresh variables. Moreover, let D be the

following set.

D := {d∈F | bSadRe ∧ ¬bRe for some e }.

We define a valuation V that is an extension of V b
i by stipulating that

y 
 q ↔ (y∈D) ∨ ¬(bSay),

y 
 s ↔ bRy.

We now see that

(i) a 
 Ab
i � q,

(ii) a 
 ¬(Ab
i ∧2s� q ∧2s).

For (i) we reason as follows. Suppose that aRb′ and b′ 
 Ab
i . If ¬(bSab

′), b′ 
 q
and we are done. So, we consider the case in which bSab

′. As Si(b, b
′), (∗∗) now

yields us a d∈D such that b′Sad. Clearly bSad and thus, by definition, d 
 q.

To see (ii) we notice that b 
 Ab
i ∧ 2s. But if bSay and y 
 q, by definition

y∈D and thus y 
 ¬2s. Thus b∈Cq∧2s
a and a 
 ¬(Ai ∧2s� q ∧2s).

The following theorem is now an immediate corollary of the above reasoning.

Theorem 13 A finite frame F validates all instances of Beklemishev’s prin-
ciple if and only if ∀i F |= Ci.

Definition 14 Let Bi be the principle A�B → A∧2C�B∧2C for A ∈ ESi
2.

Corollary 15 For a finite frame we have F |= Bi ⇔ F |= Ci.

For the class of finite frames, we can get rid of the universal quantification in
the frame condition of Beklemishev’s principle. Remember that depth(x), the
depth of a point x, is the length of the longest chain of R-successors starting
in x.

Lemma 16 If Sn(x, x′), then depth(x) = depth(x′).

14



PROOF. Sn(x, x′)⇒ S0(x, x′)⇒ x↑ = x′↑.

Lemma 17 If Sn(x, x′) & depth(x) ≤ n, then Sm(x, x′) for all m.

PROOF. The proof goes by induction on n. For n = 0, the result is clear.
So, we consider some x, x′ with Sn+1(x, x′) & depth(x) ≤ n + 1. We are done
if we can show Sm+1(x, x′) for m ≥ n+ 1.

This, we prove by a subsidiary induction on m. The basis is trivial. For the
inductive step, we assume Sm(x, x′) for some m ≥ n+ 1 and set out to prove
Sm+1(x, x′), that is

Sm(x, x′) ∧ ∀y (xRy → ∃y′ (ySxy
′ ∧ Sm(y, y′) ∧ y′Sx′↑ ⊆ ySx↑))

The first conjunct is precisely the induction hypothesis. For the second con-
junct we reason as follows. As m ≥ n + 1, certainly Sn+1(x, x′). We consider
y with xRy. By Sn+1(x, x′), we find a y′ with

ySxy
′ ∧ Sn(y, y′) ∧ y′Sx′↑ ⊆ ySx↑.

As xRy and depth(x) ≤ n + 1, we see depth(y) ≤ n. Hence by the main
induction, we get that Sm(y, y′) and we are done.

Definition 18 A B-simulation on a frame is a binary relation S for which
the following holds.

(1) S(x, x′)→ x↑ = x′↑
(2) S(x, x′) & xRy → ∃y′(ySxy

′ ∧ S(y, y′) ∧ y′Sx′↑ ⊆ ySx↑)

If F is a finite frame that satisfies Ci for all i, we can consider
⋂

i∈ω Si. This
will certainly be a B-simulation.

Definition 19 The frame condition CB is defined as follows. F |= CB if and
only if there is a B-simulation S on F such that for all x and y,

xRy → ∃y′(ySxy
′ ∧ S(y, y′) ∧ ∀d, e (y′SxdRe→ yRd)).

An immediate consequence of Lemma 17 is the following theorem.

Theorem 20 For F a finite frame, we have

F |= B ⇔ F |= CB.

Note that the M-frame condition can be seen as a special case of the frame
condition of B: we demand that S be the identity relation.

15



It is not hard to see that the frame condition of M0 follows from C0. And
indeed, ILB ` M0 as 3A ∈ ES2 and A�B → 3A�B. Actually, we have that
ILB1 ` M0.

7 Beklemishev and Zambella

Zambella proved in [18] a fact concerning Π1-consequences of theories with a
Π2 axiomatization. As we shall see, his result has some repercussions on the
study of the interpretability logic of PRA.

Lemma 21 (Zambella) Let T and S be two theories axiomatized by Π2-
axioms. If T and S have the same Π1-consequences then T + S has no more
Π1-consequences than T or S.

In [18], Zambella gave a model-theoretic proof of this lemma. As was sketched
by G. Mints (see [3]), also a finitary proof based on Herbrand’s theorem can
be given. This proof can certainly be formalized in the presence of the super-
exponentiation function, thus it yields a principle for the Π1-conservativity
logic of Π2-axiomatized theories. We denote it here as Z(EPc

2).

Z(EPc
2) (A ≡Π1 B)→ A�Π1 A ∧B for A and B in EPc

2.

where the class EPc
2 of modal formulas is defined as follows:

EPc
2 ::= 2A | ¬2A | EPc

2 ∧ EPc
2 | EPc

2 ∨ EPc
2 | A�A.

The class EPc
2 is of course tailored so that any arithmetical realization will

be provably Π2. Note that the superscript c is there to indicate that the �

modality is to be interpreted as a formalization of the notion of Π1 conserva-
tivity. It is not hard to see that the formalization of this notion is itself Π2.
Moreover, note that this class coincides in extension with the earlier defined
class ES3.

Since PRA is 2 axiomatized and proves totality of the supexp function the
principle Z(EP)c

2 applies to PRA.

But there are repercussions for the interpretability logic of PRA as well. We
know that for reflexive theories Π1-conservativity coincides with interpretabil-
ity. We also know that any Σ2-extension of PRA is reflexive (Lemma 1). Al-
together this means that a statement α� β and α�Π1 β are equivalent if α is
in Σ2 and PRA + α is Π2-axiomatized, i.e. α is in ∆2.
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We arrive at Zambella’s principle for interpretability logic:

Z (A ≡ B)→ A� A ∧B for A and B in BS1

For the Π1-conservativity logic of PRA, the principle Z(EPc
2) is really infor-

mative (see [3]), it is the only principle known on top of the basic ones for
the Π1-conservativity logic of PRA. The principle Z for interpretability logic
is very interesting as well but it does turn out to be derivable in ILB as we
will now proceed to show. (See however the final remark of this section.)

Here modal logic again proves to be informative - to have such a proof is
interesting since it is not at all clear to us how the two principles relate arith-
metically.

We shall give a purely syntactical proof of ILB0 ` Z, B0 being a restriction of
B to BS1 formulas, see Definition 14. The proof in [10] of the same fact was
not correct.

Throughout the proof we consider a full disjunctive normal form of modal
formulas:

Definition 22 A full disjunctive normal form (a full DNF) over a finite set
of formulas {C1, . . . , Cn} is a disjunction of conjunctions of the form ±C1 ∧
. . .∧±Cn where +Ci means Ci and −Ci means ¬Ci, i.e., each Ci occurs either
positively or negatively in each disjunct.

Each propositional formula is clearly equivalent to a formula in full DNF
over the set of propositional atoms occurring in it. Similarly each modal BS1-
formula, being a boolean combination of boxed formulas, is equivalent to a
formula in full DNF over the set of its boxed subformulas, or even over any
finite set of boxed formulas containing its boxed subformulas (or just its boxed
subforumulas maximal w.r.t. box-depth).

Theorem 23 ILB0 ` Z

PROOF.

Let A,B ∈ BS1 and let {A1, . . . , Am} be the set of boxed subformulas of both
A and B. Assume w.l.o.g. that A and B are in full DNF over {A1, . . . , Am}.
Assume A ≡ B. We show that A � A ∧ B. Since A comes in full DNF, this
means to show, for each disjunct D of A, that D � A ∧ B. In fact, we show
this for any disjunct of A or B.

A disjunct D of either A or B is fully determined by the set D2 of boxed
formulas occurring positively in it. We shall write D2 also for the conjunction
of its members.
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We first show, if D is a member of A or B which has a maximal set D2 (no
disjunct E with E2 properly containing D2 occurs in A or B) then D�A∧B:

Suppose such D is in A, the other case is symmetrical. Since D � A we have
also D � B. Then, noting that D2 is a conjunction of boxed formulas and
applying B0, we obtain D �B ∧D2.

Now take any disjunct E of B for which E2 does not contain D2. Then E
contradicts D2 by its negative part. We distinguish two cases: if for all E in
B the set E2 does not contain D2, then B contradicts D2. It follows from
D �B ∧D2 that D �⊥. Then clearly D � A ∧B.

Otherwise B does contain E with E2 containing D2. But since D has a
maximal Box-set, E and D must be the same and D occurs in B as well. Thus
D �B ∧D and, since ` D → A, also D � A ∧B.
We have shown that all maximal disjuncts interpret A ∧B.

We show by induction that the same is true for all other disjuncts of A and
B. This suffices for the proof.

Assume that, for all k′ with m ≥ k′ > k and all disjuncts D in either A or
B with D2 of size k′, D � A ∧ B (this has already been shown for k equal
to the size of the maximal Box-set in A and in B which is certainly less then
m). Consider a disjunct D of A, the other case is again symmetrical. Assume
w.l.o.g. that D2 has size k. We have to show D � A ∧B:
Since D � A and hence D � B, we again have that D � B ∧ D2. Now D2

conflicts with all the disjuncts of B, Box-set of which is not a superset of D2.
Again, we distinguish two cases: if there are no disjuncts of B with a Box-set
which is a superset of D2 then B conflicts with D2 and D � ⊥ and thus
D � A ∧B.

Otherwise some disjuncts of B do have a Box-set which is a superset of D2.
Let E1, . . . , El be all such disjuncts of B. Then, since D � B ∧ D2 and `
B ∧D2 → E1 ∨ . . . ∨ El (where E1 ∨ . . . ∨ El is the part of B not conflicting
with D2), we obtain D � E1 ∨ . . . ∨ El. Now it suffices to show that each Ei

interprets A ∧B.

Fix an Ei and suppose E2
i have size k. But then Ei = D and thus we have, as

before, D � (B ∧D) � (B ∧A). If E2
i have size greater then k, the induction

hypothesis apply and we obtain that Ei interprets A ∧B.

Actually it is possible to extend Zambella’s principle somewhat in such a way
that it is no longer clear whether the result is still derivable from B. First note
that the formulas in ES2 are just the propositional combinations of 2-formulas.
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Zambella’s principle for interpretability logic as studied in this paper reads

A ≡ B → A� A ∧B

where A and B should both be BS1. However, to have access to the ideas
behind Zambella’s principle, it is sufficient that A and B be both provably
of complexity ∆2. We can thus look at those ES2 formulae who are provably
equivalent to the negation of some other ES2 formula and plug those formulae
in. Reflecting this thought in a formula yields 4

2((A↔ A′) ∧ (B ↔ B′))→ (A ≡ B → A� A ∧B)

where A, A′, B and B′ are all from ES2. It actually makes sense to call this
principle the Zambella principle for interpretability logic as it more precisely
reflects the arithmetical ingredients. We have chosen not to do so as to be
consistent with earlier papers.

8 Delimitation of IL(PRA)

Let us see what we can conclude about IL(PRA) from the above. Certainly
IL(PRA) includes IL(All) but it is more than that because B is not a principle
of IL(All). The latter is clear from the fact that IL(All) ⊆ ILM ∩ ILP and Z
is not in ILP: consider the following model:

w

p q

Sw

We have w 
 3p ≡ 3q and w 1 p� p ∧ q, thus Zambella fails. The model is
clearly an ILP model.

This shows, by derivability of Z from B, that indeed B is not a principle of
IL(All).

Also we know that IL(PRA) is not ILM since M is not in IL(PRA), as A.
Visser discusses in [17]: the two logics cannot be the same because if ILM is
a part of the interpretability logic of a theory then it is a part of the inter-
pretability logic of any of its finite extensions as well. This cannot be the case
for PRA because not all of its finite extensions are reflexive. A more specific

4 We would like to thank one of the referees for pointing out that our original
extension of Zambella’s principle for interpetability logic could actually be even
generalized to its current form.
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example of a principle of ILM which is not in IL(PRA) can be given:

A� 3B → 2(A� 3B).

That this formula is not in IL(PRA) can be shown using Shavrukov’s result
from [14] about complexity of the set {ψ|ψ ∈ Π1 & φ�ψ}; see [17] for the full
proof.

We know that M0 is provable in ILB. The other principles surely contained
in IL(PRA) are B, R and W (R∗ is the conjunction of R and W). Let us show
they are mutually independent. Note that for nonderivability proofs soundness
suffices.

First let us recall the frame conditions for the two principles W and R. The con-
dition for W requires that the composition (Sw;R) is conversely well-founded,
the condition for R is the following: xRyRzSxuRv ⇒ zSyv.

W vs. B: It is easy to see that W 0 B since the former is in IL(All) while
the later is not in it. Since R is in IL(All) as well, W,R 0 B. The following
frame

w

x

y

z
Sw

is an ILB frame and it violates the frame condition for W: wRxRy and
xSwySwx and wRz. Now z is bi-similar to y and B is ensured. Thus B 0 W.

Moreover, the same frame, being an R frame, shows that B,R 0 W:
the only case to check is wRxRySwxRy. Now the condition for R requires
ySxy, but this is clearly the case since Sx is reflexive over x.

R vs. B: Again, since R ∈ IL(All), it cannot be that R ` B. We have already
discussed that neither R,W ` B. The following frame

x

z′

y

z u

v

Sx

is an ILB-frame violating the frame condition of R: We have a basic situation
violating R, which is xRyRzSxuRv and ¬zSyv. To ensure B for y we add
an arrow yRv, to ensure B for z, we add a bi-similar world z′ such that xRz′

and z′ has no successors at all.
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Moreover, since the frame is clearly a W frame as well, we have shown
that B,W 0 R.

R vs. W: already discussed in [8].

It is clear from our exposition that, though we have solved a number of prob-
lems concerning IL(PRA), many remain open, e.g. those connected with our
incomplete knowledge of IL(All). Also, we lack a modal completeness theo-
rem for ILB. Unfortunately, the complexity of the frame condition for B makes
this seem an intractable problem at the present time. In any case, the logic of
interpetability is far from being a finished subject.
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