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Abstract: We say that a regular cardinal κ, κ > ℵ0, has the
tree property if there are no κ-Aronszajn trees; we say that κ
has the weak tree property if there are no special κ-Aronszajn
trees. Starting with infinitely many weakly compact cardi-
nals, we show that the tree property at every even cardinal
ℵ2n, 0 < n < ω, is consistent with an arbitrary continuum
function below ℵω which satisfies 2ℵ2n > ℵ2n+1, n < ω. Next,
starting with infinitely many Mahlo cardinals, we show that
the weak tree property at every cardinal ℵn, 1 < n < ω, is
consistent with an arbitrary continuum function which sat-
isfies 2ℵn > ℵn+1, n < ω. Thus the tree property has no
provable effect on the continuum function below ℵω except
for the trivial requirement that the tree property at κ++ im-
plies 2κ > κ+ for every infinite κ.
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1 Introduction

It is known that the usual large cardinals do not have any effect on the
continuum function on small cardinals: in particular, the values of 2ℵn ,
n < ω, do not depend in any way on the existence or non-existence of
a large cardinal κ.1 If we remove the assumption of inaccessibility from

1Except trivially, in the sense that 2ℵn must be smaller than κ.



1 INTRODUCTION

the definition of some large cardinals κ, κ may still retain some trace
of “largeness”, and yet be smaller than ℵω and have influence on the
continuum function below ℵω.

In this paper, we are interested in the tree property : we say that a regular
κ > ℵ0 has the tree property if there are no κ-Aronszajn trees. Thus
to have the tree property is the same as to be weakly compact without
the requirement for the inaccessibility of κ. If there are no special κ-
Aronszajn trees, we refer to this property as the weak tree property. By
a result of Jensen, the weak tree property at κ+ is equivalent to the
failure of the weak square at κ.

If 2κ = κ+, κ ≥ ℵ0, then by Specker’s result there are special κ++-
Aronszajn trees. Thus the tree property at ℵ2 implies the failure of CH.
It seems natural to ask whether the tree property at κ++ puts more
restrictions the continuum function in addition to requiring 2κ > κ+.
We answer this question negatively for the continuum function below
ℵω.2

The structure of the paper is as follows. First, in Theorem 2.5, we deal
for simplicity with a single cardinal and show that the tree property
at ℵ2 is compatible with 2ℵ0 = ℵ3 and 2ℵ1 = ℵ4 (we use “gap three”
for concreteness, there is nothing particular about it).3 Theorem 2.5 is
generalized in Theorem 3.1 where we show (starting with infinitely many
weakly compact cardinals) that it is consistent that the tree property
holds at every even cardinal larger than ℵ0 below ℵω, ℵω is strong limit,
and the continuum function can be anything we want, providing 2ℵ2n ≥
ℵ2n+2, n < ω. In Theorem 3.4, we formulate an analogous result for the
weak tree property: starting with infinitely many Mahlo cardinals, it is
consistent that the weak tree property holds at every ℵn, n > 1, and the
continuum function can be anything we want, providing 2ℵn ≥ ℵn+2 for
n < ω.

Note that we use only modest large cardinal assumptions, i.e. weakly

2The study of the behaviour of the tree property below and close to ℵω seems to
be the standard test case for many of the results concerning the tree property (see
for instance [2] or [6]).

3This result for 2ℵ0 already follows from the “indestructibility” results presented
in [7].
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compact cardinals and Mahlo cardinals, and therefore we cannot get
two successive cardinals with the tree property (while we can get two
successive cardinals with the weak tree property). A generalization of
this paper to successive cardinals requires larger cardinals; see Section
4 for more open questions in this direction.

1.1 Basic facts and notation

In general, if P is a forcing notion, we write V [P ] to denote a generic
extension by P whenever the exact generic filter is not relevant. Let P,Q
be forcing notions; if there is a projection from P onto Q, we denote by
P/Q the quotient such that P is equivalent to Q ∗ P/Q.

For a regular cardinal κ, we denote by Add(κ, α) the Cohen forcing which
adds α-many subsets of κ (we identify p ∈ Add(κ, α) with a function
of size < κ from κ × α to 2). If A ⊆ α, we write Add(κ,A) for the
forcing whose conditions only use coordinates in A. If β < α, we write
Add(κ, α− β) for Add(κ, [β, α)).

Let κ be a regular cardinal, and λ > κ an inaccessible cardinal.

Definition 1.1 We denote by M(κ, λ) the forcing which is defined as
follows: (p, q) is in M(κ, λ) if p is a condition in Add(κ, λ) and q is a
function of size at most κ with dom(q) ⊆ λ and for all α ∈ dom(q),
q(α) is an Add(κ, α)-name for a condition in Add(κ+, 1)V [Add(κ,α)]. The
ordering is defined as follows: (p1, q1) ≤ (p2, q2) if p1 ≤ p2 and for all
α ∈ dom(q2), q1|α 
Add(κ,α) q1(α) ≤ q2(α).

By an analysis of Abraham [1], there is a κ+-closed term forcing which we
denote 1M(κ, λ) such that there is a projection from Add(κ, λ)×1M(κ, λ)
onto M(κ, λ). This projection property carries over to quotients: for
α < λ, the quotient M(κ, λ)/M(κ, α) is a projection in V [M(κ, α)] of
Add(κ, λ − α) × 1M(κ, λ − α) for a certain term forcing 1M(κ, λ − α)
which is κ+-closed in V [M(κ, α)].

If κ is regular, we write TP(κ) to denote that the tree property holds at
κ, i.e. every κ-tree has a cofinal branch (that is, there are no κ-Aronszajn
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trees). We write wTP(κ) to denote that the weak tree property holds at
κ, i.e. there are no special κ-Aronszajn trees. Note that by a result of
Jensen wTP(κ+) is equivalent to ¬�∗κ.

Fact 1.2 (Mitchell) If GCH holds and κ < λ are regular, then:

(i) If λ is weakly compact, then in V [M(κ, λ)], TP(λ) holds.
(ii) If λ is Mahlo, then in V [M(κ, λ)], wTP(λ) holds.

In either case 2κ = λ = κ++ in V [M(κ, λ)].

We shall use following facts for arguments that certain forcings do not
add branches to λ++-trees.4

Fact 1.3 If P is a λ+-closed forcing, 2λ > λ+, and T is a λ++-tree,
then in V [P ] there are no new branches in T .

Fact 1.4 If P is λ++-Knaster, and T is a tree of height λ++, then in
V [P ], there are no new branches in T .

These facts can be generalized as follows (see [7]):

Fact 1.5 If P × P = P 2 is λ++-cc, and T is a tree of height λ++, then
in V [P ], there are no new branches in T .

Fact 1.6 Suppose P is λ+-cc and preserves λ, Q is λ+-closed, and 2λ >
λ+. If T is a λ++-tree in V [P ], then in V [P ][Q], T has no new branches.

The following lemma is easy, but will be useful:

Lemma 1.7 Assume κ ≥ ℵ0 is regular and λ > κ Mahlo. Assume P
is κ+-cc and Q is κ+-closed. Then in V [P × M(κ, λ)], Q is still κ+-
distributive.

4We use λ++ because this is the relevant context for the paper; with appropriate
modifications, the facts hold for any regular λ as well.
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Proof. Let Add(κ, λ)× 1M(κ, λ) be the product forcing which projects
onto M(κ, λ), where 1M(κ, λ) is a κ+-closed term forcing. The product
1M(κ, λ)×Q is κ+-distributive over V [P ×Add(κ, λ)] by Easton lemma,
and thus

(1.1) all κ-sequences of ordinals in V [P × Add(κ, λ)× 1M(κ, λ)×Q]

are already in V [P × Add(κ, λ)].

There is a natural projection

(1.2) π : P × Add(κ, λ)× 1M(κ, λ)×Q→ P ×M(κ, λ)×Q.

If there were a condition r in P×M(κ, λ)×Q forcing a counterexample to
the κ+-distributivity of Q over V [P ×M(κ, λ)], one could pick a generic
filter F for P × Add(κ, λ) × 1M(κ, λ) × Q such that for some r′ ∈ F ,
π(r′) ≤ r. In V [F ], the κ-sequence of ordinals forced by r to violate the
κ+-distributivity would contradict (1.1). �

2 Large 2ℵ0 and 2ℵ1 with TP(ℵ2)

In this section we provide a proof of a special case of Theorem 3.1.
It illustrates the main idea behind the construction with more clarity
than the proof of Theorem 3.1 which needs to deal with infinitely many
cardinals.

Note that in this section we use a measurable cardinal for ease of exposi-
tion; a modification with a weakly compact cardinal is straightforward.

We assume that the reader is familiar with the usual argument which
shows that M(κ, λ) forces the tree property at λ, whenever κ < λ and
λ is weakly compact.

For concreteness of the construction in this section we will force “gap
three” on ℵ0 and ℵ1, i.e. get 2ℵ0 = ℵ3 and 2ℵ1 = ℵ4 with the tree property
at ℵ2. Other values of the continuum functions are easily obtainable;
see Theorem 3.1.

Let κ be a measurable cardinal. Denote

(2.3) P = M(ℵ0, κ)× Add(ℵ0, κ+)× Add(ℵ1, κ++).
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Remark 2.1 Note that M(ℵ0, κ) forces 2ℵ0 = ℵ2, and therefore to in-
crease the value of 2ℵ1 , we need to use some kind of product because the
forcing Add(ℵ1, 1) defined in V [M(ℵ0, κ)] collapses 2ℵ0 to ℵ1.

Lemma 2.2 (GCH). In V [P], κ = ℵ2, 2ℵ0 = ℵ3, 2ℵ1 = ℵ4.

Proof. Obvious. �

Lemma 2.3 If P forces that Ṡ is a κ-Aronszajn tree, then there are
A ⊆ κ+ and B ⊆ κ++, both size κ, and some name Ṫ , such that
M(ℵ0, κ)×Add(ℵ0, A)×Add(ℵ1, B) forces that Ṫ is a κ-Aronszajn tree.

Proof. P is κ-cc, and therefore we can assume that Ṡ is a nice name
for a subset of κ which contains at most κ-many conditions in P; the
supports of these conditions in Add(ℵ0, κ+) and Add(ℵ1, κ++) determine
the sets A,B. �

Corollary 2.4 If P adds a κ-Aronszajn tree, so does

P|κ =df M(ℵ0, κ)× Add(ℵ0, κ)× Add(ℵ1, κ).

Proof. Any bijection between A,B and κ determines an isomorphism
between Add(ℵ0, A) and Add(ℵ0, κ), and similarly for B. �

Theorem 2.5 (GCH). Assume κ is measurable and P is as in (2.3).
Then in V [P], 2ℵ0 = ℵ3, 2ℵ1 = ℵ4, and TP(ℵ2).

Proof. By Corollary 2.4, it suffices to show that P|κ cannot add a
κ-Aronszajn tree. Suppose for contradiction there is a condition (r1, r2)
in P|κ = M(ℵ0, κ) × (Add(ℵ0, κ) × Add(ℵ1, κ)) which forces there is a
κ-Aronszajn tree.

Let j : V → M be a measure ultrapower embedding with critical point
κ.
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LetG∗(H1×H2) denote a generic filter over V for M(ℵ0, κ)∗(Add(ℵ0, j(κ)−
κ)×1M(ℵ0, j(κ)−κ)), where the product Add(ℵ0, j(κ)−κ)×1M(ℵ0, j(κ)−
κ) projects to j(M(ℵ0, κ))/M(ℵ0, κ). Denote G ∗ H the j(M(ℵ0, κ))-
generic obtained from G ∗ (H2 × H1), so that j”G ⊆ G ∗ H. Assume
further that r1 ∈ G.

Now we can lift in V [G ∗ (H1 ×H2)] to

j : V [G]→M [G ∗H].

Let x∗×y∗, with x∗ = x0×x1 and y∗ = y0×y1, be V [G∗(H1×H2)]-generic
for Add(ℵ1, j(κ))V × Add(ℵ0, j(κ)), with x0 × y0 being Add(ℵ1, κ) ×
Add(ℵ0, κ)-generic over V [G ∗ (H1 ×H2)] so that

j”(x0 × y0) ⊆ x∗ × y∗.

Assume further that r2 ∈ x0 × y0.

Remark 2.6 It is worth noting that Add(ℵ1, j(κ))V × Add(ℵ0, j(κ))
lives in V [G] (actually already in V ), so x∗ × y∗ × H1 × H2 is generic
filter over V [G] for the product forcing Add(ℵ1, j(κ))V ×Add(ℵ0, j(κ))×
Add(ℵ0, j(κ)− κ)× 1M(ℵ0, j(κ)− κ), and therefore x∗, y∗, H1, and H2

are mutually generic over V [G].

Now we can lift in V [G ∗ (H1 ×H2)][x
∗ × y∗] to

j : V [G][x0 × y0]→M [G][H][x∗ × y∗].

Since (r1, r2) is in G ∗ (x0× y0), there should be a κ-Aronszajn tree T in
V [G][x0×y0], and hence also in M [G][x0×y0]. Also, because j(T )|κ = T ,
we know that T has a cofinal branch in M [G][H][x∗ × y∗].
By Remark 2.6, the relevant filters are mutually generic over V [G], and
also over M [G], hence the following is a model of ZFC:

(2.4) M [G][x0][y0][H1][H2][x1][y1].

We finish the proof by showing that the generic filter H1×H2× x1× y1
cannot add a branch to T , and therefore a branch existing in the model
(2.4) must already exist in M [G][x0 × y0], which contradicts our initial
assumption that T is a κ-Aronszajn tree in M [G][x0 × y0].
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Claim 2.7 The square of Add(ℵ1, j(κ)− κ)V is κ-cc in M [G][x0][y0].

Proof. Obvious because Add(ℵ1, j(κ)−κ)V is κ-Knaster and M(ℵ0, κ)×
Add(ℵ1, κ)V × Add(ℵ0, κ) is κ-Knaster. �

By Claim 2.7, there are no new branches in M [G][x0][y0][x1] in compar-
ison to M [G][x0][y0]. By Lemma 1.7, M [G] and M [G][x0][x1] have the
same countable sequences of ordinals, and therefore 1M(ℵ0, j(κ) − κ)
– which adds H2 – is still σ-closed in M [G][x0][x1], and by Fact 1.6
there are no new branches in M [G][x0][y0][x1][H2] in comparison to
M [G][x0][x1][y0] = M [G][x0][y0][x1]. Finally, since H1× y1 is added by a
ℵ1-Knaster forcing, and since κ has cofinality ℵ1 in M [G][x0][y0][x1][H2]
(and therefore T has cofinality ℵ1), there are no new branches in the
final model M [G][x0][y0][x1][H2][H1][y1]. �

3 Main theorems

In this section, we prove a more general version of Theorem 2.5, both for
the tree property (Theorem 3.1), and the weak tree property (Theorem
3.4).

3.1 The tree property

Let κ1 < κ2 < · · · be an ω-sequence of weakly compact cardinals with
limit λ. Let κ0 denote ℵ0. In Theorem 3.1, we control the continuum
function below ℵω = λ, λ strong limit, while having the tree property
at all even aleph’s.

Let A denote the set {κi | i < ω} ∪ {κ+i | i < ω}, and let f : A→ A be a
function which satisfies for all α, β in A:

(i) α < β → f(α) ≤ f(β).
(ii) If α = κi, then f(α) ≥ κi+1.

We say that f is an Easton function on A which respects the κi’s (con-
dition (ii)).
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Theorem 3.1 Assume GCH and let 〈κi | i < ω〉, λ, and A be as above.
Let f be an Easton function on A which respects the κi’s. Then there is
a forcing notion S such that if G is a S-generic filter, then in V [G]:

(i) Cardinals in A are preserved, and all other cardinals below λ are
collapsed; in particular, for all n < ω, κn = ℵ2n, and κ+n = ℵ2n+1,

(ii) For all 0 < n < ω, the tree property holds at ℵ2n,
(iii) The continuum function on A = {ℵn |n < ω} is controlled by f .

Proof. Let P be a reverse Easton iteration of the Cohen forcing
Add(α, 1) for every inaccessible α < λ. Let M(κn, κn+1) denote the
Mitchell forcing which makes 2κn = κn+1 and forces the tree property at
κn+1. Set Q to be the full support product

Q =
∏
n<ω

M(κn, κn+1).

Finally, let R be the standard Easton product to force the prescribed
behaviour of the continuum function below ℵω (taking into account that
the cardinals below ℵω will be equal to cardinals in A):

R =
∏
n<ω

(
Add(κn, f(κn))× Add(κ+n , f(κ+n )

)
.

For simplicity of notation, let us write R0(n) = Add(κn, f(κn)), R1(n) =
Add(κ+n , f(κ+n )), and R(n) = R0(n)× R1(n). Thus R =

∏
n<ω R(n).

We define the forcing S as follows:

(3.5) S = P ∗ (Q× R).

We leave it as an exercise for the reader to verify that S preserves all
cardinals in A and forces the prescribed continuum function (the argu-
ment is routine). We will check that the tree property holds at every
ℵ2n, 0 < n < ω.

Let us denote for 0 < n < ω:

(3.6) T(n) = R0(n+ 1)×
∏

m≤n+1

M(κm, κm+1)×
∏
m≤n

R(m),
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and

(3.7) T(n)tail = R1(n+ 1)×
∏

m>n+1

M(κm, κm+1)×
∏
m>n

R(m),

so that Q× R = T(n)× T(n)tail.

Suppose S adds a κn+1-tree T . Then T is added by

(3.8) P ∗ T(n)

because T(n)tail is κ+n+1-closed in V [P], and using Lemma 1.7, viewing
T(n) as a product of a κ+n+1-cc forcing and M(κn+1, κn+2), it follows that
T(n)tail is still κ+n+1-distributive over the forcing (3.8), and hence does
not add any κn+1-trees.

The forcing T(n) is κn+2-Knaster in V [P], and therefore T has a name Ṫ
which can be taken to be a < κn+2-sequence of elements in V [P]. This
name is already present in P(< κn+2) (the iteration P below κn+2). It
follows that

(3.9) P(< κn+2) ∗ T(n)

already adds T .

Let us define

T(n)− =
∏
m≤n

M(κm, κm+1)×
∏
m≤n

R(m).

Thus we can write the forcing in (3.9) as

(3.10) P(< κn+2) ∗ (M(κn+1, κn+2)× R0(n+ 1)× T(n)−).

This forcing is equivalent to

(3.11) P(< κn+2) ∗
(
M(κn+1, κn+2)× R0(n+ 1)

)
∗ T(n)−.

because M(κn+1, κn+2)×R0(n+ 1) does not change H(κn+1) where the
rest of the forcing lives.
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We claim that T is in fact added by

(3.12) P(< κn+2) ∗ Add(κn+1, 1) ∗ T(n)−.

This is true because T has a name in the forcing

(3.13) P(< κn+2) ∗
(
Add(κn+1, κn+2)× R0(n+ 1)

)
∗ T(n)−

of size at most κn+1 and therefore a name in the forcing (3.12).

P(< κn+2) ∗Add(κn+1, 1) preserves the weak compactness of κn+1 (since
we prepared by the Cohen forcing below), so it remains to show that
T(n)− forces the tree property at κn+1 for a weakly compact κn+1.

Let us write T(n)− as:

(3.14) T(n)− = M(κn, κn+1)× T1 × T2 × T3,

where T1 =
∏

m<nM(κm, κm+1), T2 = R0
n ×

∏
m<nR(m), and T3 =

R1(n). These forcings have the following basic properties which are
relevant for the proof:

– M(κn, κn+1) is κn+1-Knaster, and there is a projection to it from a
product Add(κn, κn+1) × 1M(κn, κn+1), where 1M(κn, κn+1) is a κ+n -
closed term forcing.

– T1 is κn-Knaster, and bounded in H(κn+1).
– T2 is κ+n -Knaster.
– T3 is κ+n -closed.

Denote κn+1 = κ. Exactly as in the proof of Theorem 2.5, using the
chain condition of T2 and T3, if T(n)− adds a κ-Aronszajn tree, so does
the forcing

M(κn, κn+1)× T1 × T2|κ× T3|κ,

where T2|κ and T3|κ denote the restrictions of all of the Cohen products
in T2 and T3 to length κ.

Let j : N → M be a weakly compact embedding with critical point
κ, where N contains all the relevant parameters. Pursuing the analogy
with Theorem 2.5, and the notation in that proof, consider the model
M [G][x0][y0][x1][H2][H1][y1], where in our case we have:

11
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– G = G0 ×G1 is M(κn, κn+1)× T1-generic.
– x0 is T3|κ-generic.
– x1 is such that x0 × x1 is j(T3|κ)-generic. Let us denote the relevant

forcing as T̂3: j(T3|κ) = T3|κ× T̂3.
– y0 is T2|κ-generic.
– y1 is such that y0 × y1 is j(T2|κ)-generic. Let us denote the relevant

forcing as T̂2: j(T2|κ) = T2|κ× T̂2.
– H1 is Add(κn, j(κ)− κ)V -generic.
– H2 is 1M(κn, j(κ) − κ)-generic, where 1M(κn, j(κ) − κ) is the term

forcing which is κ+n -closed in M [G0].

Note that we can view

M [G][x0][y0][x1][H2][H1][y1]

as the model
M [G0][G1][x0][y0][x1][H2][H1][y1],

where
G1 × x0 × y0 × x1 ×H2 ×H1 × y1

is a generic filter for a product defined in M [G0].

Also note that j(T3|κ) and j(T2|κ) are the products of the respective
Cohen forcings as defined in V , only extended to length j(κ) (because
all these forcings have equivalent definitions in V and M).

We also have the analogue of Claim 2.7 (with the same proof):

Claim 3.2 The square of j(T3|κ) is κ-cc in in M [G0][x0][y0].

The proof is now finished as in the last paragraph of the proof of Theorem
2.5, except for the last part which concerns the κ+n -Knasterness of the
forcing Add(κn, j(κ)−κ)V ×T̂2; in Theorem 2.5, this was trivial because
the forcing was the Cohen forcing at ℵ0. In the present situation, we
argue that the square of the forcing is still κ+n -cc in M [G][x0][y0][x1][H2]
(which suffices by Fact 1.5). We note that Add(κn, j(κ) − κ)V × T̂2 is
isomorphic to its square, so it suffices to show that Add(κn, j(κ)−κ)V ×
T̂2 is κ+n -cc in M [G][x0][y0][x1][H2].

Let us denote
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3 MAIN THEOREMS

– P1 = 1M(κn, κn+1)× T3|κ× T̂3,
– P2 = Add(κn, κ)V ,
– P3 = T1 × T2|κ× Add(κn, j(κ)− κ)V × T̂2.

By Easton lemma, P1 forces that P2×P3 is κ+n -cc, and therefore P1×P2

forces that P3 is κ+n -cc. As P1 × P2 projects to the forcing correspond-
ing to the generic filter G0 × x0 × x1, it follows that P3 is κ+n -cc in
M [G0][x0][x1].

Now notice that 1M(κn, j(κ) − κ) is still κ+n -closed in M [G0][x0][x1] by
Claim 3.2. Therefore by Easton lemma, P3 is κ+n -cc in M [G0][x0][x1][H2].
We can view M [G0][G1][x0][y0][x1][H2] as a model which is a generic
extension of M [G0] by the following product defined in M [G0]:

1M(κn, j(κ)− κ)× T1 × T2|κ× T3|κ× T̂3,

and therefore all generic filters for the components of the product are
mutually generic over M [G0]. It follows that Add(κn, j(κ)−κ)V × T̂2 is
κ+n -cc in

M [G0][x0][x1][H2][G1][y0] = M [G][x0][y0][x1][H2],

as desired. �

3.2 The weak tree property

For the sake of completeness, we also address the question of the weak
tree property and the continuum function below ℵω.

Let κ2 < κ3 < · · · be an ω-sequence of Mahlo cardinals with limit
λ. Let κ0 denote ℵ0, and κ1 denote ℵ1. In Theorem 3.4, we control the
continuum function below ℵω = λ, λ strong limit, while having the weak
tree property at all ℵn, n ≥ 2.

Let A denote the set {κi | i < ω}, and let f : A→ A be a function which
satisfies for all α, β in A:

(i) α < β → f(α) ≤ f(β).
(ii) If α = κi, then f(α) ≥ κi+2.
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We say that f is an Easton function on A which respects the κi’s (con-
dition (ii)).

The following natural modification of the Mitchell forcing first appeared
in [8].

Definition 3.3 Let 0 ≤ n < ω be given. We define M(κn, κn+1, κn+2)
as a collection of pairs (p, q) which satisfy the same conditions as in
M(κn, κn+2) with the difference that instead of Add(κ+n , 1) for collaps-
ing, we use Add(κn+1, 1), and the size of the domain of q is now <
κn+1. In particular, M(κn, κn+2) is equal to M(κn, κ

+
n , κn+2). Note that

M(κn, κn+1, κn+2) is a projection of the product of the Cohen forcing
Add(κn, κn+2) and of a certain term forcing 1M(κn, κn+1, κn+2) which
κn+1-closed.

The following theorem is a generalization of Theorem 4.11 in [8].

Theorem 3.4 Assume GCH and let 〈κi | i < ω〉, λ, and A be as above.
Let f be an Easton function on A which respects the κi’s. Then there is
a forcing notion S such that if G is a S-generic filter, then in V [G]:

(i) Cardinals in A are preserved, and all other cardinals below λ are
collapsed; in particular, for all n < ω, κn = ℵn,

(ii) The continuum function on A = {ℵn |n < ω} is controlled by f .
(iii) The weak tree property holds on every ℵn, 2 ≤ n < ω.

Proof. Set Q to be the full support product

Q =
∏
n<ω

M(κn, κn+1, κn+2).

Let R be the standard Easton product to force the prescribed behaviour
of the continuum function below ℵω (taking into account that the car-
dinals below ℵω will be equal to cardinals in A):

R =
∏
n<ω

Add(κn, f(κn)).

14
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For simplicity of notation, let us write R(n) = Add(κn, f(κn)).

We define the forcing S as follows:

(3.15) S = Q× R.

Again, we leave it as an exercise for the reader to verify that the cardinals
in A are preserved, κn = ℵn, and the continuum function below ℵω is
controlled by f .

Let n < ω be fixed. We show that there are no special κn+2-Aronszajn
trees in V [S].

Let us denote:

(3.16) T(n) =
∏
m≤n

M(κm, κm+1, κm+2)×
∏

m≤n+1

R(m),

and

(3.17) T(n)tail =
∏

m>n+2

M(κm, κm+1, κm+2)×
∏

m>n+2

R(m),

so that

(3.18) S = T(n)× R(n+ 2)

×M(κn+1, κn+2, κn+3)×M(κn+2, κn+3, κn+4)× T(n)tail.

Suppose for contradiction S adds a special κn+2-Aronszajn tree. Then
also the forcing

(3.19) T(n)× R(n+ 2)× Add(κn+1, κn+3)× 1M(κn+1, κn+2, κn+3)

× Add(κn+2, κn+4)× 1M(κn+2, κn+3, κn+4)× T(n)tail

adds a special κn+2-Aronszajn tree because it projects onto S. Denote
the tree T .

Then T is added by

(3.20) T(n)× R(n+ 2)× Add(κn+1, κn+3)

× 1M(κn+1, κn+2, κn+3)× Add(κn+2, κn+4)

15
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because 1M(κn+2, κn+3, κn+4)×T(n)tail is κ+n+2-closed in V , and using an
obvious analogue of Lemma 1.7, it follows that 1M(κn+2, κn+3, κn+4) ×
T(n)tail is still κ+n+2-distributive over the forcing (3.20), and hence does
not add any κn+2-trees.

We finish the proof by arguing that the forcing in (3.20) cannot add
T . First note that R(n + 2) × 1M(κn+1, κn+2, κn+3) × Add(κn+2, κn+4)
is κn+2-closed in V and therefore preserves the Mahloness of κn+2, and
also the chain and closure properties of T(n)×Add(κn+1, κn+3). Let us
work in

V ∗ = V [R(n+ 2)× 1M(κn+1, κn+2, κn+3)× Add(κn+2, κn+4)].

Let Ṫ and ġ be T(n) × Add(κn+1, κn+3)-names for the tree and a spe-
cializing function. We can identify Ṫ with a name for a subset of κn+2

and ġ with a function from κn+2 to κn+1. Since the forcing T(n) ×
Add(κn+1, κn+3) is κn+2-cc, we may assume that already T(n)|κn+2 ×
Add(κn+1, κn+2) adds Ṫ and ġ, where T(n)|κn+2 is the forcing∏

m≤n

M(κm, κm+1, κm+2)×
∏

m≤n+1

R(m)|κn+2,

where
∏

m≤n+1R(m)|κn+2 is the restriction of the Cohen forcings to
length κn+2.

Since T(n)|κn+2 × Add(κn+1, κn+2) is κn+2-cc over V ∗, there is a V -
inaccessible δ, κn+1 < δ < κn+2, such that T |δ, g|δ are added by the
forcing

(3.21) T =
∏
m<n

M(κm, κm+1, κm+2)×M(κn, κn+1, δ)

×
∏
m≤n

R(m)|δ × Add(κn+1, δ)

which is δ-cc. Also note that R(n+1)|δ is the same forcing as Add(κn+1, δ),
and therefore we removed R(n+ 1)|δ from (3.21).

We finish the proof by arguing that over V ∗, the forcing from V ∗[T] to
V ∗[T(n)|κn+2 × Add(κn+1, κn+2)] cannot add a branch to T |δ. Let us

16
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denote by 1M(κn, κn+1, κn+2 − δ) the term forcing which is κn+1-closed
in V ∗[M(κn, κn+1, δ)] such that in V ∗[M(κn, κn+1, δ)],

M(κn, κn+1, κn+2)/M(κn, κn+1, δ)

is a projection of Add(κn, κn+2 − δ)× 1M(κn, κn+1, κn+2 − δ).
Thus it suffices to show that over V ∗[T], the forcing

(3.22) Add(κn, κn+2 − δ)× 1M(κn, κn+1, κn+2 − δ)

× Add(κn+1, κn+2 − δ)×
∏
m≤n

R(m)|(κn+2 − δ)

does not add a branch to T |δ, where
∏

m≤nR(m)|(κn+2 − δ) is the re-
striction of the Cohen forcings to the interval [δ, κn+2).

This is shown exactly as at the end of Theorem 3.1,5 with the forcing
Add(κn+1, κn+2−δ) being κn+1-closed in V ∗, and

∏
m≤nR(m)|(κn+2−δ)

being κn+1-Knaster in V ∗. �

4 Open questions

Q1. Is it possible to get the results of Theorem 3.1 and 3.4 with a strong
limit ℵω with 2ℵω > ℵω+1? Or even stronger, with the tree property at
ℵω+2?

Note that with the failure of GCH at ℵω, the situation is much more
complex because we can no longer use a simple product construction.
In [5], Gitik and Merimovich show that an arbitrary continuum function
below ℵω is compatible with the failure of GCH at ℵω, but in their model
they do not discuss the tree property. Note that in the paper [4], a model
is constructed with the tree property at the ℵ2n’s, 0 < n < ω, with the
failure of GCH at ℵω, but in that model, 2ℵ2n = ℵ2n+2 for every n < ω,

5It is immaterial to the argument whether we work in a generic extension of M as
in Theorem 3.1, and discuss the ordinals κ < j(κ), or work in a generic extension of
V , and discuss the ordinals δ < κn+2. Note that the proof of Theorem 3.1 could also
have been formulated with some δ < κ without mentioning an elementary embedding.
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and GCH holds at the remaining cardinals below ℵω; the construction
in [4] does not seem to admit an easy generalization along the lines of
Theorem 3.1.

Cummings and Foreman [2] proved that starting with infinitely many
supercompact cardinals, there is a model where the tree property holds
at every ℵn, 2 ≤ n < ω, with 2ℵn = ℵn+2 for all n < ω.

Q2. Starting with infinitely many supercompact cardinals, is it con-
sistent that the tree property holds at every ℵn, 2 ≤ n < ω, and the
continuum function is arbitrary such that 2ℵn ≥ ℵn+2, n < ω?

There is a notion of a super tree property which captures the combina-
torial essence of a supercompact cardinal (see for instance [9], or [3], for
definitions). Weiss noticed that Mitchell’s forcing over a supercompact
cardinal yields the super tree property. Later, Fontanella [3] and Unger
independently proved that starting with infinitely many supercompact
cardinals, the super tree property can hold at every ℵn, 2 ≤ n < ω.

Q3. Starting with infinitely many supercompact cardinals, is it consis-
tent that the super tree property holds at every ℵn, 2 ≤ n < ω, and the
continuum function is arbitrary such that 2ℵn ≥ ℵn+2, n < ω?
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